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1 General Overview

In this research paper [1], it focuses on searching the shape signature. There are certainly several
approaches to the idea, structure detection, partial matching, but these methods still lack of effective
processing, and can perform with specific application. So, the properties of this research should be
multi-scale and informative, including effective.

Heat Kernel Signature (HKS) computes point signature by analysing from the neighborhood of a
point on a discrete surface to compare the matching shape. As the time progresses, heat will diffuse
to the larger neighborhoods, which means heat diffusion can represent the local shape features. In
other words, the matching shape have a same heat progression, or signature in a long period of
time. It can be used in many applications, for example, shape registration, partial matching.

This project is inspired from various past researches. Global Point Signature on a certain point
relies on eigenvectors and eigenvalues of Laplace-Beltrami operator [2], which is sensitive to the
noise. Another example is Diffusion map and distance [3], which is similar to this paper.

2 Heat Operator and Heat Kernel

The heat diffusion is analysed on Riemannian manifolds M , which is significant to Heat Kernel
Signature. This operator is defined by the heat equation below (Eq. 1):

∆Mu(x, t) = −∂u(x, t)

∂t
(1)

where ∆M means the Laplace-Beltrami operator on M . u(x, t) is the Dirichlet boundary con-
dition function that satisfied the equation u(x, t) = 0 with any vertex x ∈ ∂M and time t. With
initialized value of heat distribution f , the heat operator Ht(f) stand for heat distribution at the
specific time t, which can be defined by equation:

Htf(x) =

∫
M

kt(x, y)f(y) dy (2)

Upon the equation 2, kt(x, y) is the minimum function that satisfied an equation, called heat kernel.
The heat kernel on compact M can be calculated by eigenfunction decomposition of Laplacian-
Beltrami operator. In this experiment, heat diffusion is applied on 2 sample meshes, cow.obj and
human.obj [4].
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kt(x, y) =

∞∑
i=0

e−λitϕi(x)ϕi(y) (3)

Figure 1: Heat Operator on cow.obj at time of 0.5 with 300 eigenvectors

Figure 2: Heat Operator on human.obj at time of 3 with 300 eigenvectors

3 Heat Kernel Signature (HKS)

According to the paper [1], heat kernel is informative which contains the information of geometry

of the shape. This is because it is operated from heat equation ∆Mu(x, t) = −∂u(x,t)
∂t , which is

consist of spatial data changing over a period of time. Given a point x ∈ M , Heat Kernel Signature
is defined by the equation:

HKS(x, t) = kt(x, x)

Functionally, if the eigenvectors, calculated from Equation 3, are not identical, the equation can
be converted to analyse a point x over an function of time t.
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kt(x, x) =

∞∑
i=0

e−λitϕi(x)
2 (4)

Figure 3: Heat Kernel Signature on cow.obj at time of 0.5 with 300 eigenvectors

Figure 4: Heat Kernel Signature on human.obj at time of 3 with 300 eigenvectors

With heat kernel signature, the different between heat operator (Figure 1 and Figure 2) and heat
kernel signature (Figure 3 and Figure 4) can be seen that the latter one have the heat moving faster
than the first one. On the other hands, the graphs, which is plotted between time interval of [t1, t2],
visualize the approach of heat throughout the mesh. The time interval is set where t1 = 4ln10/λ300

and t2 = 4ln10/λ2, where λ2 and λ300 are 2nd and 300th eigenvalues respectively. The progresses
of heat between two methods are same development with different value.
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Figure 5: Left: Heat Kernel Signature on cow.obj Right: Heat Operator on cow.obj

Figure 6: Left: Heat Kernel Signature on human.obj Right: Heat Operator on human.obj

4 Discrete Setting

In this section, it explain how to implement mesh Laplace operator, proposed by Mikhail Belkin [5].
It is mentioned that cotangent Laplace operator is not good for convergence [1]. Instead, it uses
mesh Laplace operator to estimate heat, which is robust and stable. The mesh Laplace operator
L is a matrix that is defined by inverse of diagonal matrix of areas at the vertices A, and weight

matrix of neighborhoods W [L = A−1W ]. From the equation above ∆Mu(x, t) = −∂u(x,t)
∂t , it can

be converted to the form ut = e−tLu0, where u0 is an initial heat distribution, and e−tL is a matrix
exponential.

e−tL =

inf∑
i=0

(−tL)i

i!

A matrix exponential can be viewed as heat operator, so combining with Equation 2 and Equa-
tion 3, it can clarify that we can use eigenvectors and eigenvalues to determine heat kernel that is
stable, or non-sensitive data. Eventually, the mesh Laplace operator is defined by the equation:
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Lh
Kf(w) =

1

4πh2

∑
t∈K

Area(t)

#t

∑
p∈V (t)

e
−∥p−w∥2

4h (f(p)− f(w)) (5)

5 Multi-Scale Matching

The purpose of this paper is to capture the heat kernel signature of meshes at different scales. The
paper shows 2 heuristic to observe the trajectory of heat distribution over a function of time. The
first heuristic is finding the difference between kt(x

′, x′), where x′ is a point that matches at other
scale, and kt(x, x) during the interval of time [t1, t2]. As the time increase, the difference of larger
scale is small compared to smaller scale. To reduce the error, it is suggested to normalize the heat
kt(x, x) over the manifold M ,

∫
M

kt(x, x) dx to contribute the shape of signature uniformly, called
heat trace. Next, the heat variation at small t has more visible effect on large t. This is due to the
heat distribution’s behavior is defined by the average of heat dissipation in neighborhood. Thus,
at the smaller scale, the signature can change logarithmically and can represent HKS well.

With these observations, the difference between 2 Heat Kernel Signature can be determined
during [t1, t2] by the equation:

d[t1,t2](x, x
′) =

(∫ t2

t1

(
|kt(x, x)− kt(x

′, x′)|∫
M

kt(x, x)dx

)2

d log t

)1/2

(6)

The images below visualize the difference of heat kernel signature between selected vertex and
other vertices in the mesh between time interval of [t1, t2]. From Figure 7, the vertices, which are
used on cow.obj and human.obj, are set on front right leg and right hand respectively. It can be
seen that the shape that is similar to the selected area has a low difference. The difference can be
seen in scale below.

Low High
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Figure 7: Heat Kernel Signature distance at time interval of [1, 10] Left: Heat Kernel Signature
distance on cow.obj Right: Heat Kernel Signature distance on human.obj

The images above (Figure 7) use the time interval between t1 = 1 and t2 = 10. On the other
hands, if the time interval is set between t1 = 0.01 and t2 = 1000000, the gap will be too large and
it cannot visualize the difference accurately (Figure 8) as the heat will have the same progress at
the end, according to Figure 5 and Figure 6. In contrast, if the gap of time is small, like Figure 9
that uses time interval of [1, 2], it cannot evaluate the difference of heat diffusion too. Based on
Figure 9, there is no difference in cow feet, which is contrasting to Figure 7, and human hands’
heat should differ from human feet’, which is not applied in the image.

Figure 8: Heat Kernel Signature distance at time interval of [0.01, 1000000] Left: Heat Kernel
Signature distance on cow.obj Right: Heat Kernel Signature distance on human.obj
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Figure 9: Heat Kernel Signature distance at time interval of [1, 2] Left: Heat Kernel Signature
distance on cow.obj Right: Heat Kernel Signature distance on human.obj

6 Extension

To evaluate the quality of the implementation, the program will be applied in shape retrieval
to classify meshes. Maks Ovsjanikov proposed a paper [6], which consist of multiple evaluation
methods, and one of them is feature description and bag of features. In this paper, it uses these
algorithms to approach a classification for shape retrieval.

6.1 Feature Description

The approach to observe the similarity is converting heat kernel signature to groups of feature-based
vocabulary, similar to groups of words. For each vertex x ∈ X, where X is a set of mesh vertices,
it can define heat kernel signature as a set of features P = (p1(x), p2(x), ..., pn(x)) where element
is defined as

pi(x) = c(x)Kαi−1t0(x, x) (7)

In this experiment, c(x) is a constraint to satisfy the condition ||p(x)||2 = 1. The initial timer
t0 is set to be 0.1, and alpha value α is 1.32.

6.2 Bag of Features

The vocabulary is a set of centers of clustering defined as P = (p1, p2, ..., pv), where v is number
of groups. The method to define the centers P is an unsupervised learning, or K-Mean algorithm
on feature description p(x). Each group has its own feature descriptor pv, and for every vertex x,
feature distribution θ(x) is a set of probability θj(x) of the point x relating to the descriptor pj , for
j in range of [0, v], defined as:

θj(x) = c(x)e−
||p(x)−pj ||

2
2

2σ2 (8)

where each set have constraint c(x) to meet the condition ||θ(x)||1 = 1. The sigma value is found
that it has the best value at twice of the median distance between the cluster centers p1, p2, ..., pv.
By integrating the cluster from equation 9, the bag of features is obtained.
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f(X) =

∫
X

θ(x)da(x) (9)

At the end, to define the similarity between two meshes, it can be calculated from the L1
distance of bag of features.

dBoF (X,Y ) = ||f(X)− f(Y )||1 (10)

7 Evaluation

The first evaluation is to observe the similarity of heat on corresponding vertices. Figure 11 visual-
izes the similarity by embedding Multi-Dimension Scale. The meshes that are used for observation
are human meshes, imported from Articulated mesh animation [4] (Figure 10), and the vertices’ heat
are captured from Right hand, Left hand, Right foot, Left foot and Head. The graph demonstrates
that different meshes can have similar heat diffusion at the same vertices.

Figure 10: Example of human meshes using for evaluation [4]

Figure 11: Multi-Dimension Scale of heat kernel signature
on 3 human meshes
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The experiment for K-Nearest Nearest uses dataset imported from SHREC’15. [7, 8] The dataset
is consist of 7 classes, which are ”santa”, ”horse”, ”dog”, ”bird”, ”laptop”, ”female” and ”male”
(Figure), and each class has 10 meshes. Each mesh is applied with bag of features algorithm as the
features, and split into training set 80 percents and testing set 20 percents.

santa horse dog bird laptop female male

Table 1: The examples of meshes for each class [7, 8]

The task is to classify the meshes by using K-Nearest Neighbor. After training the model,
the result will be as precision-recall curve to visualize the accuracy. As a result (Figure 12), the
accuracy of the model is not high due to small amount of training dataset. To improve the model,
it requires more mesh dataset.

Figure 12: PR curve of K-Nearest Neighbor for shape re-
trieval

8 Discussion

According to the paper [1], there are still many limitations of heat kernel signature. The program
needs to compute for a long time, so there should be an adjustment to reduce computational time
which it suggested to use an equation Kt = e−tLA. However, it is difficult to implement exponential
matrix. The next problem is that it cannot compute with symmetric geometry shape, for instance,
sphere, cube. Since it process a heat feature with eigenfunctions, the function cannot handle a
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symmetric shape. The final one is to find the most suitable time interval of heat kernel signature at
different time automatically. In the code, the interval is defined between 4ln10/λ300 and 4ln10/λ2,
which is good for certain shapes but not all. To be applied in practical application, it needs to find
any shape for user experience, so it is necessary to find a time interval based on the selected shape.
This part should focus on the effect of shape character on heat progression over a time.

9 Conclusion

Heat kernel signature is a method to observe heat movement on the vertices of mesh to determine
shape signature. It analyses heat progression based on vertex neighbors, where heat diffusion can
represent local shape through time interval. The movement can be visualized with eigenvalues and
eigenvectors, which are implemented in kt(x, x) =

∑∞
i=0 e

−λitϕi(x)
2 (Equation 4). The difference of

heat diffusion in a certain period of time can highlight the similarity of shapes well as its signature.
It can be used for shape retrieval to observe the similar shape by using heat diffusion as features,
and categorize them as bag of feature to reduce dimension. With this feature, it can find the class
of mesh by K-Nearest Neighbor algorithm.
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