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Abstract

2D Gaussian Splatting has recently provided a novel method for accurately recon-

structing geometrically consistent radiance fields from multi-view images, improv-

ing surface representation and achieving high-quality, real-time rendering. However,

existing 2D or 3D Gaussian splatting methods do not offer the capability for user-

directed scene editing. While some 3D Gaussian-based methods exist for avatar-

specific editing, they are limited to avatar applications and do not extend to general

scenarios. Therefore, this paper introduces GaussCraft, an real-time scene editing

framework that utilizes 2D Gaussian Splatting for high-quality mesh reconstruction.

Unlike previous methods, GaussCraft only requires training once using the recon-

structed mesh and does not need retraining for each edited scene. Specifically, Gauss-

Craft reconstructs the mesh from multi-view images using 2D Gaussian Splatting,

and then binds 2D Gaussians to each mesh face, allowing users to render scenes with

user-edited, deformed meshes. This method has been tested on both synthetic and

real-world captured data, showing significant potential for application across various

fields. Our code can be found on: https://github.com/jiwonhaha/GaussCraft

https://github.com/jiwonhaha/GaussCraft
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Chapter 1

Introduction

Novel view synthesis is a critical task in computer vision and graphics, where the

capacity to interpolate and extrapolate views from sparse image data is paramount.

Traditional Multi-View Stereo (MVS) methods [13] which reconstruct geometries

from limited viewpoints often struggle with quality, yielding less realistic renderings

when viewed from new angles. In recent years, Neural Radiance Fields (NeRF)

[7] have emerged as a breakthrough in high-fidelity synthesis, inspiring a host of

researches in the field. Despite their impressive performances, the implicit nature of

NeRF representations makes direct object editing within scenes challenging.

To make scenes easier to modify, NeRF-editing technique [9] has been devel-

oped, allowing for the editing of implicit representations while still maintaining high

output quality. Nevertheless, these NeRF-based methods often require extensive

computational resources and training times, which limit their practicality for real-

time applications. This has led to significant research efforts aimed at reducing these

limitations [14, 15, 16, 17]. For instance, MiP-NeRF360 [18] significantly cuts down

on training time, yet still demands extensive computational resources.

In response to the limitations of current synthesis methods, the 3D Gaussian

Splatting (3DGS) model [8] emerges as a viable alternative. It employs an explicit

representation by optimizing multiple 3D Gaussians, characterized by their posi-

tion, opacity (α), anisotropic covariance, and spherical harmonic (SH) coefficients.

This explicit representation not only accelerates training but also facilitates real-time
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Figure 1.1: The pipeline of the 2D Gaussian Splatting editing framework

view synthesis. The 3DGS model has also inspired further investigations into various

subfields, such as anti-aliasing [19], material modeling [20, 21], dynamic scene recon-

struction [22], and the creation of animatable avatars [23, 11]. However, animatable

avatar creation with Gaussian Avatar [11], are limited to specific case like editing

Flame mesh models [24]. In contrast, NeRF-editing techniques [9] support editing

from multi-view images, highlighting the need for broader applicability in Gaussian

Splatting-based editing applications. Despite this need, the reliance of 3DGS on

less adaptable mesh reconstruction methods imposes a significant limitation on its

flexibility.

Building upon the concept of surfels (surface elements) which represent complex

geometries effectively in SLAM and robotics by approximating surfaces with localized

attributes based on known geometry [25, 26, 27, 28], 2D Gaussian Splatting (2DGS)

introduces a refined technique that utilizes explicit ray-splat intersections. This

method not only adheres to perspective accuracy but also significantly enhances the

quality of reconstructions [10]. Unlike conventional approaches relying on ground

truth geometry or depth sensors, which are limited by lighting conditions, 2DGS

incorporates surface normals into the splatting process to facilitate robust surface

regularization, improving both the accuracy and smoothness of the resultant surface

meshes.
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This paper introduces GaussCraft, a novel 2D Gaussian editing technique, as

shown in Figure 1.1. The method begins by optimizing 2D Gaussians to reconstruct

smooth meshes from point clouds, images, and camera data obtained via Structure-

from-Motion (SfM) [29]. After the initial optimization, the model reconstructs a mesh

and extracts key properties such as scaling, position, and rotation for each triangular

face. 2D Gaussians are then placed at the center of each mesh face and bound to

them, allowing a clear distinction between local and global spaces, similar to the

method used in Gaussian Avatar [11]. However, unlike their approach, GaussCraft

uses 2D Gaussians, omitting the z-axis in the local coordinate system and treating

mesh faces as tangent planes. This simplification leads to faster optimization and

more consistent results.

GaussCraft also integrates adaptive density control techniques to refine the mesh

further. We adopt adaptive density control from Gaussian Avatar and 3DGS, with

our unique method where excessive deviations in splat placement trigger pruning,

ensuring a tightly integrated and efficiently edited mesh.

Finally, mesh deformation is handled using As-Rigid-As-Possible (ARAP) tech-

niques [30], enabling dynamic updates to the mesh properties and their visualization

during rendering.

In summary, the contributions of this paper are as follows:

• The introduction of flexible, real-time user-defined 2D Gaussian editing capa-

bilities with mesh deformation.

• The simplification of local space dimensionality, enhancing both efficiency and

result consistency.

• The implementation of novel adaptive density control to improve editing accu-

racy and performance.

This paper begins with a discussion of the preliminaries, explaining an in-depth

look at traditional 3D representations, Neural Radiance Fields, 3D Gaussian Splat-

ting, and ARAP deformation. Following that, we present a literature review, covering

classical scene reconstruction methods, including point-based rendering and radiance
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fields. Next, we explore NeRF-Editing, which addresses a similar task to ours using

implicit representation with NeRF [9]. We then move on to 2D Gaussian Splatting

[10] and Gaussian Avatar [11], which serve as primary inspirations for our model.

The methods section details the process of mesh reconstruction, user editing via

mesh deformation, the approach for binding meshes and faces, and the optimization

process, including adaptive Gaussian control. In the evaluation section, we apply our

model to various datasets, providing both qualitative and quantitative assessments

to demonstrate its efficiency and effectiveness. Finally, the conclusion summarizes

our contributions and discusses potential directions for future work.
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Chapter 2

Preliminaries

This chapter provides an overview of the foundational concepts and techniques es-

sential for understanding the GaussCraft, which is focused on mesh reconstruction

and editing. We begin with a detailed introduction to the primary methods of 3D

representation in computer vision, exploring both implicit and explicit approaches.

Subsequently, we delve into the specifics of 3D Gaussian Splatting, including dis-

cussions on Spherical Harmonics and the rasterization process crucial for rendering.

The chapter concludes with an in-depth explanation of As-Rigid-As-Possible Defor-

mation, focusing on techniques for managing rigid mesh deformation.

2.1 3D Representation and Reconstruction

3D reconstruction is the process of capturing the shape and appearance of real-world

objects or scenes from sensor data, such as images, depth maps, or point clouds.

This process can be categorized into two main types of representations: explicit and

implicit. Each representation has its own strengths, limitations, and suitable use

cases depending on the requirements of the application.
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2.1.1 Explicit Representation

Figure 2.1: Explicit Representations of Stanford Bunny [1] (From left [1, 2, 3, 4])

Explicit representations involve directly storing and manipulating the geometric in-

formation of 3D objects. These methods provide a clear and direct way to describe

the shape and structure of objects but often require significant storage and processing

power.

Mesh

Meshes are the most commonly used explicit representation for 3D objects in com-

puter graphics and computational geometry. They consist of vertices, edges, and

faces, with each face typically being a triangle. Vertices are defined as 3D points in

space, and edges connect these points to form triangular faces. This configuration

allows for the representation of complex surfaces and is extensively applied in areas

such as 3D modeling, animation, and finite element analysis.

Especially in triangular meshes, Numerous triangles discretize surface of a 3D

object, and each triangles are specifically defined by the 3D coordinates of vertices.

This collection of triangles provides a detailed approximation of the object’s sur-

face. Triangular meshes are particularly valued for their ability to represent complex

surfaces with a relatively minimal number of elements. However, the creation and
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manipulation of high-resolution meshes can be computationally intensive, and the

performance of the representation is heavily dependent on the mesh resolution, so it

is often difficult to represent 3D object precisely. Despite these challenges, meshes

remain a fundamental tool in many 3D reconstruction studies [31, 32, 33].

Multi-View Stereo (MVS)

Multi-view stereo (MVS) is a technique that reconstructs 3D geometry from multiple

images taken from different viewpoints. By getting the correspondences between

these images, MVS algorithms estimate the depth and surface normals of the scene,

which are then used to build a 3D model. MVS is often used in conjunction with

structure from motion (SfM) [29] to generate a dense point cloud or mesh from a

sparse set of camera poses and feature points.

MVS can produce high-quality reconstructions with detailed surface geometry, es-

pecially when the input images have significant overlap and high resolution. However,

the quality of the reconstruction can degrade in regions with textureless surfaces, oc-

clusions, or reflective materials. Additionally, MVS requires careful calibration and

alignment of the input images to produce accurate results.

Volumetric Representation

Volumetric representations is a 3D reconstruction method divide 3D space into a

regular grid of voxels (volume elements), where each voxel stores information such as

the presence, color, or other properties of the object within that volume. Typically,

a voxel grid is used to represent the occupancy or color of space within a defined

bounding box.

Volumetric methods like voxel grids [34, 35] are particularly effective for rep-

resenting complex shapes and allowing topological changes during reconstruction.

They are widely adopted in various applications, including real-time 3D reconstruc-

tion systems like KinectFusion [36]. However, the main limitation of traditional

volumetric representations is their substantial memory consumption, especially at

high resolutions. To address this challenge, sparse volumetric data structures such
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as octree [37] and quadtree [38] have been used. These structures only allocate mem-

ory for regions of the volume where data is present, significantly reducing memory

usage while still capturing detailed geometrical information.

Point Cloud

A point cloud represents [39, 40] a 3D object as a set of discrete points in space, where

each point is defined by its 3D coordinates, and sometimes with additional component

such as color or normal vector. Point clouds are typically obtained from 3D scanning

devices, such as LiDAR or depth cameras, or generated through techniques like MVS.

Point clouds are a flexible representation that can capture specific details of a

surface and are suitable for applications like 3D scanning, object recognition, and

surface reconstruction. However, point clouds do not essentially describe the con-

nectivity between points, making it challenging to directly use them for tasks that

require surface information, such as rendering or physical simulations. To overcome

this limitation, point clouds are often used to convert into other representations, such

as meshes or implicit surfaces.

2.1.2 Implicit Representation

Figure 2.2: Implicit Representations of Stanford Bunny [1] and NeRF (From left
[5, 6, 7])
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Implicit representations encode the geometry of 3D objects using mathematical func-

tions or neural networks rather than explicit surface descriptions. These methods

offer a compact and continuous representation of shapes, which can be advantageous

for certain types of 3D reconstruction and editing tasks.

Occupancy Networks

The occupancy function [5] is one of the simplest implicit representations, and it

assigns a binary value o(x) to each point x in space to classify whether the point lies

inside (occupied, o(x) = 1) or outside (unoccupied, o(x) = 0) the object. With this

binary classification, reconstruct the surface of the object can be done by identifying

the boundary between occupied and unoccupied regions.

Voxel grids with occupancy value are often used with occupancy function. The

surface of the object can then be extracted using techniques like marching cubes

[41]. While this approach is conceptually simple and straightforward, but it have

limitation of suffering from limited resolution and aliasing artifacts in the resulting

surface.

Signed Distance Function (SDF)

A Signed Distance Function (SDF) is a scalar field d(x) that assigns a value to

each point x in space, representing the distance to the nearest surface of an object.

The sign of this value indicates whether the point is inside (d(x) < 0) or outside

(d(x) > 0) the object. The surface itself corresponds to the zero-level set of the

SDF, where d(x) = 0.

SDFs provide a smooth and continuous representation of surfaces, making them

useful for applications like shape deformation, collision detection, and level set meth-

ods. These functions can be stored in a volumetric grid or represented implicitly using

neural networks, as seen in recent deep learning approaches to 3D shape representa-

tion. However, high-resolution SDFs is memory intensive because capturing specific

details correctly often requires high computation cost.

To overcome given limitation, Truncated Signed Distance Function (TSDF) is
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introduced, an extension of the SDF designed to optimize memory usage and com-

putation in 3D data representations. Instead of recording the exact distance to

the nearest surface, the TSDF truncates this distance to a predefined threshold, τ ,

focusing computational resources on regions near the surface.

Definition and Properties The TSDF, dTSDF(x), is defined as:

dTSDF(x) = min(max(d(x),−τ), τ)

where d(x) is the signed distance, and τ is the truncation threshold. Points with

distances beyond τ are clamped to ±τ , depending on whether they are inside or

outside the object.

Neural Radiance Fields (NeRF)

Figure 2.3: Overview of Neural Radiance Fields (NeRF) [7]

Neural Radiance Fields (NeRF) utilize a fully connected neural network to represent

3D scenes by modeling both color c and density σ at each spatial point. These

quantities are functions of the 3D position x = (x, y, z) and the viewing direction

d = (θ, ϕ), where θ and ϕ define the viewing angles.

Training Procedure NeRF is trained using a collection of images captured from

various viewpoints. The neural network is designed to map a given pair of 3D
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coordinates and viewing direction (x,d) to corresponding RGB color c(x,d) and

density σ(x). The objective of training is to minimize the error between the predicted

views generated by NeRF and the actual observed images.

Volumetric Rendering NeRF’s rendering process is based on volumetric render-

ing, where the color C(r) of a ray r(t) passing through the scene is calculated. The

ray is parameterized as:

r(t) = o+ td

where o is the camera origin, t represents the distance along the ray, and d defines

the ray direction.

The color of the ray C(r) is obtained by integrating the contributions of color

and density along the ray path:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt

Where:

• T (t) = exp
(
−
∫ t

tn
σ(r(s)) ds

)
is the accumulated transmittance, representing

the probability that light is not absorbed prior to reaching point t.

• σ(r(t)) is the volumetric density at point r(t), determining how much light is

scattered or absorbed.

• c(r(t),d) is the emitted color at point r(t) in direction d.

Photorealistic Rendering NeRF excels in generating highly photorealistic im-

ages from novel viewpoints by learning a continuous and differentiable representation

of the scene. Unlike traditional methods that rely on explicit geometry representa-

tions, NeRF encodes both geometry and appearance implicitly within the network.
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Advantages and Limitations

NeRF offers several advantages, including its ability to provide a continuous and

smooth 3D scene representation, making it particularly effective for tasks such as

scene editing, view interpolation, and optimization. Additionally, NeRF excels at

capturing fine surface details and complex lighting interactions, enabling the render-

ing of highly intricate scenes. However, it also presents some limitations. The model

requires a substantial amount of images and significant computational resources for

training, as it involves optimizing a large number of parameters. Moreover, despite

its ability to produce high-quality renderings, NeRF’s rendering process is relatively

slow compared to traditional methods, as it relies on dense sampling and integration

along each ray.

2.2 3D Gaussian Splatting

Figure 2.4: Overview of 3D Gaussian Splatting [8]

3D Gaussian Splatting (3DGS) [8] is a explicit representation in a way that allows

efficient real-time rendering. In this section, we will discuss the initialization of 3D

Gaussians, the use of spherical harmonics for representing view-dependent appear-

ance, and the rasterization process that converts 3D Gaussians into 2D images.

2.2.1 Initialization

The initialization of 3D Gaussians in 3DGS [8] involves setting up the parameters

that define each center of Gaussians M , covariances S, colors C, and opacities A.

The covariance matrix S is particularly important, as it defines the anisotropic

shape of the Gaussian. It can be decomposed as:
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Algorithm 1 Initialization of 3D Gaussian Splatting [8]

1: M ← SfM Points ▷ Positions
2: S,C,A← InitAttributes() ▷ Covariances, Colors, Opacities

Σ = RSSTRT ,

where R is a 4 × 1 quaternion vector converted into a 3 × 3 rotation matrix de-

scribing the orientation of the Gaussian, and S is a 3×1 scaling vector converted into

a 3×3 scale matrix that controls the size along the principal axes. The initialization

typically starts with setting µ at the center of the SfM points [29], R as an identity

matrix (indicating no initial rotation), and S based on the expected spread of the

Gaussian in each direction.

2.2.2 Spherical Harmonics

Spherical harmonics are used in 3DGS to represent the view-dependent appearance

of each Gaussian. This approach allows the encoding of complex lighting effects,

such as diffuse and specular reflections, in a compact form that is computationally

efficient.

Figure 2.5: Spherical Harmonics in a spherical coordinate system
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Spherical harmonics are mathematical functions defined on the surface of a sphere

as figure 2.5, which can be used to approximate complex functions over spherical

domains, such as the appearance of an object under varying lighting conditions. In

a spherical coordinate system, a point P on the sphere is defined by two angles, θ

(colatitude) and ϕ (longitude).

The spherical harmonics Y m
l (θ, ϕ) are given by:

Y m
l (θ, ϕ) =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
P

|m|
l (cos θ)eimϕ,

where:

• l is the degree and m is the order of the harmonic.

• P
|m|
l (cos θ) is the associated Legendre polynomial, defined as:

P
|m|
l (cos θ) = (−1)|m| (l + |m|)!

(l − |m|)!
P

(−|m|)
l (cos θ),

where P
|m|
l (cos θ) is the standard Legendre polynomial.

• eimϕ accounts for the azimuthal variation.

These harmonics provide a basis for representing functions on a sphere, such as

the color c(θ, ϕ) of a Gaussian, which can be expressed as a linear combination of

spherical harmonics:

c(θ, ϕ) =
L∑
l=0

l∑
m=−l

cml Y
m
l (θ, ϕ),

where:

• clm are the coefficients corresponding to each basis function.

• L is the order of the spherical harmonics, controlling the level of detail in the

appearance representation.
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These coefficients clm are learned during the training process, enabling the model

to capture complex variations in appearance with respect to different viewing angles.

2.2.3 Rasterization

Rasterization in 3D Gaussian Splatting involves projecting the 3D Gaussians onto

the 2D image plane, where they are converted into pixel values. Unlike traditional

rasterization, which operates on triangles or polygons, 3DGS rasterization deals with

ellipsoidal splats, defined by their Gaussian distributions.

Color Computation: The color C of a pixel is computed by blending the

contributions of all Gaussians that project onto that pixel. The blending operation

accounts for depth ordering to maintain correct visibility:

C =
∑
i=1

ciα
′
i

i−1∏
j=1

(1− α′
j),

where:

• ci is the color contribution of the i-th Gaussian.

• α′
i is the opacity of the i-th Gaussian after considering its depth relative to the

camera.

• The product term
∏i−1

j=1(1 − α′
j) ensures that closer Gaussians occlude those

further away.

Tile-based Rasterizer:

1. Cull Gaussian: Perform frustum culling to discard Gaussians that are outside

the view frustum.

2. Screen Space Gaussian: Project 3D Gaussians onto 2D screen space. The

covariance projection function is defined as where J is Jacobian of the affine

approximation of the projective transformation and W is viewing transforma-

tion:

Σ′ = JWΣW TJT
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3. Create Tiles: Split the screen into 16x16 pixel tiles, preparing the grid for

further processing.

4. Duplicate with Keys: Generate keys for each Gaussian in every tile. Each

key is a 64-bit value where the lower 32 bits represent the view-space depth of

the Gaussian and the higher 32 bits represent the Tile ID.

5. Sort by Keys: Perform depth ordering by radix sorting the keys in each tile.

6. Identify Tile Ranges: Identify the range of Gaussians that belong to each

tile based on the sorted keys.

7. Get Tile Range: Read the Gaussian list for each tile to maximize parallelism

in loading, sharing, and forward/backward processing.

8. Blend in Order: Accumulate color and α values by traversing the lists front-

to-back for each pixel. The process stops when a target saturation of α is

reached in a pixel, ensuring proper blending of overlapping Gaussians.

9. Backward Process: During backpropagation, gradients are propagated fol-

lowing the ratio of the opacity of the Gaussian to ensure accurate gradient

calculation across the splats.

This method optimizes for high-load scenarios with many small splats by effi-

ciently sorting and processing Gaussians in parallel, utilizing the GPU’s capabilities

for real-time rendering.

2.2.4 Adaptive Control

Refinement Iteration Protocol: The system undergoes a refinement iteration

every 100 iterations, ensuring periodic adjustments to the Gaussian components

based on defined criteria.

• Remove Gaussian: Gaussians with opacity (α) less than a threshold ϵ =

−0.005 are removed from the system to prevent the processing of elements

with negligible impact on the model.
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• Gradient-Based Adaptive Decisions:

– If the gradient of the view-space position exceeds a threshold τpos =

0.0002, the algorithm decides between splitting or cloning the Gaussian

based on its scale.

– Split Gaussian: If the scale exceeds τscale, the Gaussian is split into two,

with each new Gaussian having its scale divided by 1.6. This step is taken

to refine the model detail in areas of high complexity.

– Clone Gaussian: If the scale is below the threshold, the Gaussian is

cloned and repositioned based on the gradient direction, aiding in covering

more space in the model efficiently.

• Initialize Gaussian: Every 3000 iterations, all Gaussians have their opacity

reset to zero to moderate the increase in the number of Gaussians and remove

redundant or floating elements.

2.3 As-Rigid-As-Possible Deformation

The ARAP deformation [30] is mainly focuses on minimizing energy. Specifically,

the technique defines an energy function that measures the deviation of the mesh’s

local transformations from being perfectly rigid. The energy function is calculated as

the sum of the squared differences between the original mesh’s local transformations

(which are ideally rigid) and the deformed mesh’s local transformations.

In mathmatic formula, the energy E in ARAP can be expressed as:

E =
∑
i

∑
j∈N (i)

wij

∥∥(Ri(vj − vi))− (v′
j − v′

i)
∥∥2

where:

• vi and vj are the positions of adjacent vertices in the original mesh.

• v′
i and v′

j are the positions of the corresponding vertices in the deformed mesh.
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• Ri is the optimal rotation matrix that approximates the transformation of

vertex i and its neighbors.

• wij is a weight that typically depends on the distance between vertices i and

j, often derived from the original mesh’s structure.

• N (i) denotes the set of neighboring vertices around vertex i.

The ARAP algorithm works iteratively to minimize this energy. The process

involves local and global steps repeated until convergence:

1. Local Step: For each vertex, the algorithm computes the optimal rotation

matrix Ri that best approximates a rigid transformation of the local neighbor-

hood. This step ensures that each part of the mesh tries to move in a way that

closely resembles a rigid body movement.

2. Global Step: The algorithm then updates the positions of the vertices in the

deformed mesh by solving a linear system that minimizes the overall energy E,

given the fixed rotation matrices Ri computed in the local step.

Through this iterative process, ARAP efficiently reduces the energy, leading to de-

formations that are visually smooth and natural while preserving the original mesh’s

local structures. Users can interactively manipulate specific vertices or regions of the

mesh, and the ARAP technique ensures that the resulting deformations maintain

the mesh’s integrity and aesthetic quality.
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Chapter 3

Literature Review

In this section, we will begin by exploring classic scene reconstruction methods,

followed by an examination of neural radiance field-based editing techniques. After

that, we will delve into two key studies that primarily inspired our method: 2D

Gaussian Splatting and Gaussian Avatar.

3.1 Classic Scene Reconstruction

Traditional scene reconstruction techniques for novel view synthesis originated from

light fields, often using dense sampling techniques [42]. These early methods faced

challenges when handling unstructured capture data. The advent of Structure-from-

Motion (SfM) [29] allowed for the collection of photos to synthesize novel views

by estimating a sparse point cloud during camera calibration. Multi-view stereo

(MVS)[13] techniques followed, producing impressive 3D reconstructions by blending

the captured images into the novel view, using the geometry for re-projection [43,

44, 45, 46]. However, these methods often struggled with unstructured regions and

over-reconstruction artifacts. Recent advancements in neural rendering algorithms

[47] have reduced these artifacts and mitigated the issues associated with storing all

input images on the GPU, outperforming traditional methods in most cases.
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3.2 Point-Based Rendering and Radiance Fields

Point-based methods traditionally rendered disconnected and unstructured geome-

try samples, which resulted in visible artifacts like holes or aliasing. However, ad-

vancements in point-based rendering, such as splatting techniques and neural point

rendering, have addressed many of these issues.

Recent work has integrated point-based methods with NeRF [7]-like volumetric

rendering to take advantage of the strengths of both approaches, leading to improved

rendering quality. These methods allow for more flexible scene representations and

efficient rendering, particularly for scenes with complex depth or dynamic content.

Methods like Pulsar [48] and ADOP [49] focus on faster and more scalable point-

based rendering, using techniques like diffuse point-based blending to maintain high-

quality results even in challenging scenarios. Additionally, some approaches utilize

anisotropic covariance optimization and efficient depth sorting to handle scenes with

complex geometry, offering a robust solution for real-time novel view synthesis.

3.3 NeRF editing

Figure 3.1: The pipeline of NeRF editing framework [9]

The neural radiance field (NeRF) has demonstrated remarkable performance in novel

view synthesis, allowing the creation of highly realistic images from diverse view-

points. Building on this foundation, this approach facilitates shape deformation

within a scene, enabling the generation of new images from arbitrary perspectives

after editing.
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Initially, in NeRF-editing [9] the NeRF network is trained to reconstruct trian-

gular mesh using Marching Cubes. The mesh from the original NeRF network often

has a rough surface. To improve editing, the NeuS [50] method is used, which learns

geometry as a neural signed distance function (SDF). The mesh from the SDF’s

zero-level set serves as the editing object, allowing intuitive scene modifications.

Subsequently, an explicit triangular mesh representation from the scene’s implicit

representation is explained, allowing users to directly edit it.

After the user edits the triangular mesh of the scene, the deformation is trans-

ferred to the implicit volume in two steps. First, cage mesh is created, and it is

converted to tetrahedral mesh by tetrahedronize the cage using TetWild. The dis-

placement of the triangular mesh vertices vi drives the deformation of the tetrahe-

dral mesh, transferring the surface changes to the volume. The deformed tetrahedral

mesh is denoted as T ′ and t′ is vertices of tetrahedral mesh after deformation while

v′ is vertices of triangular mesh after deformation The ARAP deformation is ap-

plied to tetrahedral mesh based on surface constraints, calculating the barycentric

coordinates of each triangular vertex within its corresponding tetrahedron. The op-

timization problem is:

minE(T ′), subject to At′ = v′,

A is the barycentric weight matrix, solvable with the Lagrangian multiplier.

After applying surface deformation to the tetrahedral mesh, the discrete defor-

mation field of the “effective space” which is the internal space of the cage mesh is

derived and use it to bend the casting rays. Rays are cast into the space containing

the deformed tetrahedral mesh to render the deformed radiance field. For each sam-

pled point, the corresponding tetrahedron in the deformed mesh T ′ is located. Using

the displacement of vertices before and after deformation, the displacement ∆p is

computed for each point via barycentric interpolation. This displacement is added

to the input coordinates to predict the density and RGB values:

ζ(p+∆p), ζ(d)→ (σ, c).
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3.4 2D Gaussian Splatting

Figure 3.2: Illustration of 2D Gaussian Splatting [10]

To achieve accurate geometry reconstruction while ensuring high-quality novel view

synthesis, the authors introduce differentiable 2D Gaussian splatting (2DGS). Un-

like 3D Gaussian splatting (3DGS), which encapsulates the entire angular radiance

in a volumetric blob, this method simplifies the modeling by employing ”flat” 2D

Gaussians within a 3D space. In this approach, the 2D Gaussian represents a density

distribution over a planar disk, with the disk’s normal vector indicating the direction

of the steepest density gradient. This feature allows for more precise alignment with

thin surfaces. While some earlier methods also use 2D Gaussians for geometry re-

construction, they typically require dense point clouds or ground-truth normals. In

contrast, this technique reconstructs both appearance and geometry simultaneously,

relying solely on a sparse calibration point cloud and photometric supervision.

The 2D Gaussian splat is defined by a central point pk, two principal tangential

vectors tu and tv, and a scaling vector S = (su, sv) that controls the Gaussian’s

variances. The primitive’s normal vector is determined by the cross product of the
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two tangential vectors, tw = tu × tv. The orientation of the splat can be described

by a 3× 3 rotation matrix R = [tu, tv, tw], and the scaling factors are represented by

a 3× 3 diagonal matrix S, with the third entry being zero.

The 2D Gaussian is defined in a local tangent plane within the 3D world space

and is parameterized as:

P (u, v) = pk + sutuu+ svtvv = H(u, v, 1, 1)⊤,

H =

[
sutu svtv 0 pk

0 0 0 1

]
=

[
RS pk

0 1

]
is a homogeneous transformation matrix that encapsulates the geometry of the 2D

Gaussian. For any point u = (u, v) within the uv space, the 2D Gaussian value is

calculated using the standard Gaussian function:

G(u) = exp

(
−u2 + v2

2

)
.

The parameters for the center pk, scaling (su, sv), and rotation (tu, tv) are all learn-

able. Similar to 3DGS, each 2D Gaussian primitive has an associated opacity α and

a view-dependent color c, which are parameterized using spherical harmonics.

After that, 2D Gaussians are rendered by projecting them onto the image plane

via an affine approximation. Each Gaussian is centered at a point in 3D space, with

increasing projection error as the camera moves farther from this center. To reduce

this error, a homogeneous transformation matrix is used to map world coordinates

into screen space.

For efficient ray-splat intersections, the splatting process as finding the intersec-

tion of two planes is represented: the x-plane and the y-plane. The intersection is

represented by a point in homogeneous coordinates, which is then projected onto the

image space. This method helps handle degenerate cases where the splat degenerates

into a line under extreme viewing angles. To stabilize the rendering of these degen-

erate splats, a low-pass filter is applied, ensuring that the Gaussian splat remains

well-defined across different viewpoints.
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3.4.1 Mesh Extraction

To extract meshes from the reconstructed 2D splats, the authors utilize a process that

involves rendering depth maps of the training views and subsequently fusing these

depth maps into a coherent 3D mesh using Truncated Signed Distance Function

(TSDF) fusion, as implemented in Open3D [51].

Depth Map Rendering The first step in their approach is to render depth maps

from the training views. For each view, the median depth value of the splats projected

onto the pixels is calculated, providing a robust depth estimate that reduces the

impact of noise and outliers.

TSDF Fusion The depth maps are then fused into a single 3D volumetric repre-

sentation using TSDF fusion. In TSDF fusion, each voxel in a predefined 3D grid

accumulates signed distance values from the depth maps. The fusion algorithm com-

bines these signed distances by taking into account the confidence in each depth

measurement, usually weighted by factors such as the viewing angle and distance

from the camera. This fusion process results in a smooth, coherent surface represen-

tation of the reconstructed object.

In their implementation, the voxel size is set to 0.004, which determines the

resolution of the resulting mesh, and the truncation threshold is set to 0.02, which

controls the maximum distance from the surface that is considered during the fusion

process. These parameters are crucial in balancing the trade-off between mesh detail

and computational efficiency.

Surface Reconstruction Once the TSDF volume is constructed, the surface is

extracted using the Marching Cubes algorithm [41], which converts the volumetric

data into a mesh. The Marching Cubes algorithm iterates through the voxels in

the grid, identifying how the surface intersects each voxel, and generates triangles

to approximate the surface. This results in a triangular mesh that can be used for

rendering or further processing.

25



3.5 Gaussian Avatar

Figure 3.3: Overview of Gaussian Avatar [11]

The main concept of the Gaussian Avatar method [11] is establishing links between

the FLAME [24] mesh and 3D Gaussian splats. Initially, each triangle in the mesh

is associated with a 3D Gaussian, and this Gaussian moves with the corresponding

triangle over time. More specifically, the Gaussian remains fixed within the triangle’s

local space but dynamically changes position in the global (metric) space as the

triangle moves. The mean position of the triangle’s vertices, T , is used as the local

space origin. The direction of one edge, the triangle’s normal vector, and their

cross product are concatenated to form the rotation matrix R, which defines the

orientation of the triangle in global space. The scaling factor k is calculated using

the mean edge length and its perpendicular to describe the triangle’s size.

For each triangle’s 3D Gaussian, its local position µ, rotation r, and anisotropic

scaling s are defined in the local space. Initially, µ is set to the local origin, r is an

identity matrix, and s is a unit vector. During rendering, these local parameters are
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transformed into global space by the following equations:

r′ = Rr,

µ′ = kRµ+ T,

s′ = ks.

The scaling of the triangle is incorporated into these transformations, which en-

sures that the 3D Gaussian’s local position and scaling are relative to the triangle’s

size. This allows for an adaptive step size in metric space while maintaining a con-

stant learning rate for parameters in the local space. As a result, 3D Gaussians

associated with smaller triangles move slower during iteration steps compared to

those paired with larger triangles, making the interpretation of parameters related

to the distance from the triangle center more intuitive.
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Chapter 4

Method

Figure 4.1: Overview of GaussCraft

The input for GaussCraft consists of cameras calibrated via Structure-from-Motion

(SfM) [29], and it employs 2D Gaussian splatting [10] for mesh extraction. Initially,

each 2D Gaussian is initialized based on a sparse point cloud generated by the SfM
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process, with the Gaussian positions set to match the locations of the point cloud. If

point clouds are not available alongside the cameras, the positions of the Gaussians

are initialized randomly. The parameters of these 2D Gaussians are then optimized

using the corresponding images and camera parameters. This optimization refines the

geometric reconstruction, demonstrating the effectiveness of 2D Gaussian splatting

in accurately capturing the scene’s structure. Users can modify the reconstructed

mesh using As-Rigid-As-Possible (ARAP) deformation, as discussed in this paper, or

opt for alternative deformation techniques, such as skeleton or cage-based methods.

As depicted in Figure 4.1, after the deformation, the model processes the recon-

structed mesh, images, and camera parameters as inputs. It employs the Gaussian

Avatar methodology to adjust the scale, position, and rotation of each Gaussian in

both global and local spaces. The model initializes a 2D Gaussian at the center of

each mesh face. Contrary to Gaussian Avatar, this model treats each mesh face as a

tangent plane to the bound 2D Gaussians, with local adjustments in scale, position,

and rotation expressed in two dimensions. The loss function integrates RGB, Depth

Distortion, and Normal Consistency losses from 2DGS with position and scale losses

from Gaussian Avatar, ensuring that the Gaussians minimally deviate from their

corresponding mesh faces and preventing excessive scaling.

The model also adopts an adaptive density control similar to Gaussian Avatar,

implementing the Binding Inheritance theory which binds a new 3D Gaussian to

the same triangle as the old one and prevents pruning of all Gaussians on a face

by maintaining at least one per face. To address artifacts from the misalignment of

2D Gaussians with mesh faces, a pruning process includes a position threshold that

significantly restricts the movement of each Gaussian’s center away from the center

of its face. This methodology ensures the accurate and efficient rendering of edited

novel view synthesis scenes.

After the optimization of Gaussians with the reconstructed mesh, the user can

input the deformed mesh for rendering. The model then utilizes the mesh properties

of the deformed mesh instead of the reconstructed mesh to recalculate the modified

global parameters of scale, position, and rotation. This allows the model to render

the user-edited scene effectively in real-time.
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4.1 Reconstruction

The reconstruction process begins by utilizing the optimized 2D Gaussians obtained

from the input set of images, camera parameters, and the Structure-from-Motion

(SfM) point cloud. The initial sparse point cloud derived from the SfM process is

used to initialize these 2D Gaussians, which are then iteratively refined.

A crucial part of this process involves mitigating noise that can arise when op-

timizing purely with photometric losses, a common challenge in 3D reconstruction

tasks. To enhance the accuracy of the geometry reconstruction, two regularization

terms: depth distortion and normal consistency are introduced. Both of them will

be deeply handled in optimization part, and this part it will explain their role briefly.

4.1.1 Depth Distortion

Unlike NeRF, which focuses on volumetric rendering, the 2D Gaussian splatting

method doesn’t inherently consider the distance between intersected Gaussian prim-

itives. This can lead to inaccuracies in color and depth rendering, particularly when

Gaussians overlap along a ray. To address this, a depth distortion loss (Ld) is intro-

duced. This loss minimizes the distance between ray-splat intersections by concen-

trating the weight distribution along the rays, thus reducing discrepancies in depth

representation. The efficient implementation of this regularization, utilizing CUDA,

ensures that the 2D Gaussians are properly aligned along the ray depth.

4.1.2 Normal Consistency

To ensure that the 2D Gaussian splats accurately align with the surfaces they repre-

sent, it is necessary to enforce normal consistency. This involves aligning normals of

the splats with the actual surface normals of the object. The normal consistency loss

(Ln) encourages this alignment by penalizing deviations between the splat normal

and the estimated surface normal. Specifically, the normal is computed based on

the gradients of the depth maps, ensuring that the 2D splats adhere closely to the

underlying geometry.
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4.1.3 Mesh Extraction

To extract meshes from the reconstructed 2D splats, we render depth maps of the

training views by using the median depth value of the splats projected to the pixels.

We then utilize truncated signed distance fusion (TSDF) to fuse these reconstruction

depth maps, following the approach implemented in Open3D [51]. During the TSDF

fusion, voxel size and the truncated threshold are set to 0.004 and 0.02 as 2DGS.

4.2 User Editing

Once the mesh is obtained, users can edit it through mesh deformation techniques. In

this paper, we primarily utilize As-Rigid-As-Possible (ARAP) mesh deformation due

to its ability to offer intuitive and flexible manipulation while preserving the mesh’s

local geometric properties by minimizing distortion. ARAP is particularly effective

in preventing artifacts that can arise from excessively large or irregularly shaped

faces, which may challenge the Gaussians’ ability to cover those areas accurately.

By using ARAP, the model produces a deformed mesh that retains the relative

shape and size of each triangular face, ensuring that the Gaussians can more accu-

rately represent the edited scene. This preservation of local structure is essential

for maintaining the consistency of the reconstructed scene, allowing the Gaussians

to capture and render fine details effectively. Again, other mesh deformation meth-

ods such as skeleton or cage-based deformations also can be used instead of ARAP

deformation.

4.3 2D Gaussian Rigging

After mesh reconstruction, this model incorporates the concepts from the Gaussian

Avatar [11], which uses global and local parameters to link triangular meshes with

2D Gaussian splats. While Gaussian Avatar is built on the principles of 3D Gaus-

sian Splatting (3DGS), this project adapts these ideas specifically for 2D Gaussian

Splatting (2DGS), tailoring the approach to operate effectively in a 2D environment.
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In this approach, each triangle of the mesh is paired with a 2D Gaussian, which

follows the triangle as it deforms. Unlike 3DGS, where Gaussians are associated

with volumetric elements, 2DGS ties the Gaussians to the surfaces represented by

the triangular mesh. The key difference from Gaussian Avatar is that, in 2DGS, the

Gaussians are limited to two dimensions. Each face of the mesh is treated as the

tangent space for its corresponding splat. This dimensional reduction minimizes the

likelihood of splats moving excessively along the Z-axis, leading to both more stable

behavior and reduced computational overhead.

The process begins by assigning a fixed 2D position to each Gaussian within

the local space of its parent triangle, while allowing it to move dynamically in the

global space as the triangle deforms. Initially, the mean position T of vertices of

triangular face is chosen as the origin of the local space. A rotation matrix R is

then constructed using the direction of one triangle edge, the normal vector of the

triangle, and their cross product to establish the orientation of the triangle in global

space. Additionally, a scalar k is derived from the mean length of one edge and

its perpendicular distance, ensuring consistent scaling between the local and global

spaces.

For each 2D Gaussian associated with a triangle, we define its 2D position µ, 2D

rotation r, and anisotropic scaling s within the triangle’s local space. The position

µ is initialized at the origin of this local space, the rotation r is set as an identity

matrix (indicating no initial rotation), and the scaling s is initialized as a unit vector,

representing uniform scaling.

To enforce the 2D constraint and eliminate any rotation around the z-axis, we

modify the quaternion q = (qw, qx, qy, qz) used in the rotation matrix. In a 3D

rotation, qx, qy, qz define the axis of rotation, while qw governs its magnitude. By

setting qz = 0, we restrict the rotation to the xy-plane, ensuring no contribution from

the z-axis and effectively confining the system to a 2D transformation. This allows

the 2D Gaussian to behave as if it were constrained to a tangent plane associated

with each triangle.

Additionally, the position vector µ is treated as a 2D vector rather than a 3D one.

This simplifies the transformation by keeping the 2D Gaussian aligned with the local
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tangent plane of the triangle. This setup treats each triangle face as a 2D plane for

the Gaussian splat, which is particularly important for ensuring that the Gaussians

maintain their intended orientation and scaling during the rendering process.

During rendering, these local properties position µ, rotation r, and scaling s are

transformed into the global space. The transformation ensures that the 2D Gaussians

follow the deformations of the corresponding mesh triangles in a way that preserves

their local orientation and anisotropic scaling. The following transformations are

applied to the local parameters:

r′ = Rr, (4.1)

µ′ = kRµ+ T, (4.2)

s′ = ks. (4.3)

By incorporating triangle scaling, the local position and scaling of a 2D Gaussian

are defined relative to the absolute scale of the associated triangle. This enables an

adaptive step size in the metric space with a constant learning rate for parameters

defined in the local space. For example, a 2D Gaussian paired with a smaller triangle

will move slower during an iteration step compared to those paired with larger trian-

gles. This approach also simplifies the interpretation of the parameters concerning

the distance from the triangle’s center.

This rigging process ensures that as the triangles deform or move, the corre-

sponding 2D Gaussians adjust accordingly, maintaining their relative positions, ori-

entations, and scales. By adapting the Gaussian Avatar methodology to 2DGS, this

project achieves a more accurate and responsive scene representation tailored to 2D

surfaces, allowing for robust and flexible rendering of novel views.

4.4 Optimization

This model employs five distinct loss functions: RGB loss [8], depth distortion loss,

normal consistency loss [10], and position and scale loss [11].
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4.4.1 RGB Loss

The RGB loss can be expressed as:

Lrgb = (1− λ)L1 + λLD-SSIM,

where the L1 loss is combined with the D-SSIM term. The parameter λ controls the

balance between the L1 loss and the D-SSIM loss, allowing for a trade-off between

pixel-level accuracy and perceptual similarity.

4.4.2 Depth Distortion Loss

The depth distortion loss, inspired by Mip-NeRF360 [18], addresses the issue of Gaus-

sian primitives that are close in color and depth becoming overly spread out during

the rendering process. This loss function reduces such artifacts by concentrating the

weight distribution along rays, thereby enhancing depth accuracy. Specifically, the

loss is formulated as:

Ld =
∑
i,j

ωiωj|zi − zj|,

where ωi represents the blending weight for the i-th intersection point along the ray:

ωi = αiĜi(u(x))
i−1∏
j=1

(
1− αjĜj(u(x))

)
.

Here, αi denotes the opacity of the i-th splat, Ĝi(u(x)) is the Gaussian function

evaluated at that point, and the product term accounts for the accumulated trans-

parency from preceding splats along the ray. This approach ensures precise depth

placement of splats and prevents overlapping Gaussians from introducing artifacts

in the rendering process.

Unlike the distortion loss in Mip-NeRF360, which focuses on fixed sample points,

this allows GaussCraft dynamically adjusts the depth of these intersections, resulting

in a more accurate and coherent scene representation by effectively distributing depth

information along the rays.
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4.4.3 Normal Consistency Loss

The normal consistency loss ensures that the surface normals of all 2D splats align

correctly with the actual surface geometry, especially when viewed from different an-

gles. This is crucial for maintaining surface integrity, particularly in complex scenes

where semi-transparent surfaces might overlap. The loss encourages the alignment

of splat normals with the gradients of the depth maps, specifically at the point where

the cumulative opacity reaches 0.5. It is defined as:

Ln =
∑
i

ωi

(
1− nT

i N
)
,

where i refers to the index of the intersected splat along the ray, ωi is the blending

weight, ni is the normal of the splat facing the camera, andN is the normal calculated

from nearby depth points. The normal N is computed using a finite difference

method:

N(x,y) =
∇xp×∇yp

|∇xp×∇yp|
.

By enforcing this alignment, the normal consistency loss ensures that the rendered

splats accurately follow the surface they represent, reducing artifacts and improving

visual coherence.

4.4.4 Position Loss

To ensure that the 2D Gaussian splats accurately follow the geometry of the under-

lying mesh, a position loss is applied. This loss maintains the spatial relationship

between the splats and the mesh triangles they represent. A key requirement is that

each Gaussian splat remains close to its associated triangle. For example, a splat

representing a feature on the hand should not drift toward an unrelated triangle,

such as one on the arm. Although splats are initially placed at the center of their

respective triangles, with additional splats introduced nearby during optimization,

there is still a risk of misalignment. To mitigate this, we adopt a regularization term
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that constrains the local position of each Gaussian:

Lposition = ∥max(µ, ϵposition)∥2,

where ϵposition = 1 acts as a threshold, permitting minor positional shifts that remain

within the bounds of the triangle’s scale. This approach helps keep the splats properly

aligned with the intended features of the mesh, preventing significant deviations that

could lead to visual inaccuracies.

4.4.5 Scale Loss

The scale of the 2D Gaussian splats is crucial for maintaining visual coherence,

particularly during animations. If the scale of a Gaussian splat differs significantly

from that of its associated triangle, it can lead to undesirable artifacts, such as

jittering, when the triangle undergoes even minor rotations. To prevent this, a scale

loss is implemented to regularize the size of each Gaussian splat relative to its parent

triangle:

Lscaling = ∥max(s, ϵscaling)∥2,

where ϵscaling = 0.6 serves as a threshold, deactivating the loss term when a Gaus-

sian’s scale is less than 60% of its triangle’s scale. This tolerance is necessary to

avoid excessive shrinkage of the splats, which could otherwise degrade rendering per-

formance. By maintaining an appropriate scale, the splats effectively represent the

scene without introducing jitter or other artifacts.

4.4.6 Final Loss Function

The final loss function is therefore expressed as:

L = Lrgb + αLd + βLn + γLp + δLs,

where α = 100 is suitable for bounded meshes as mentioned in 2DGS [10], β =

0.05, γ = 0.5, and δ = 1. The terms Lp and Ls are only applied to visible splats.
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These combined loss functions ensure a balanced and effective optimization process,

allowing the model to produce accurate and visually coherent results.

4.5 Adaptive Density Control

We utilize the densification and pruning method for 2D Gaussian splatting as de-

scribed in background. This process begins with an initial sparse set of Gaussians

obtained from center of faces of mesh, which we iteratively refine to more accurately

capture the scene’s geometry.

During optimization, Gaussians are densified every 100 iterations starting from

the 600th iteration. This process targets regions where geometric features are missing

(under-reconstructed areas) and where Gaussians cover large portions of the scene

(over-reconstructed areas). The densification is guided by the magnitude of the view-

space position gradients, which are monitored using a threshold parameter, τpos, set

to 0.0002 in our experiments.

For Gaussians in under-reconstructed regions, we clone them by creating dupli-

cates with identical sizes and shifting them along the positional gradient. In contrast,

for large Gaussians with high variance, we split them into smaller Gaussians by scal-

ing down their size by a factor of ϕ = 1.6, while maintaining a constant total volume.

To prevent an excessive increase in Gaussian density, we regularly prune Gaus-

sians that are either too large or have a transparency level (α) below a threshold

ϵα. This pruning helps maintain a balance between accurate representation and

computational efficiency.

In addition, we employ a binding inheritance strategy inspired by the Gaussian

Avatar technique [11]. This ensures that new Gaussians generated during densifica-

tion remain linked to their original geometric context. Specifically, each 2D Gaussian

created during densification is bound to the same triangle as its predecessor, pre-

serving continuity and fidelity to the local scene geometry. This binding inheritance

mechanism involves associating each Gaussian with the index of its parent triangle,

ensuring it inherits the position and orientation within the global space.

We adopt an additional pruning technique to remove Gaussians that are too far
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from the center of the mesh, as 2D Gaussians can produce more inconsistent results

with inappropriate positioning than 3D Gaussians. First, we compute the Euclidean

distance for each point from the center, and then define an initial threshold. To make

this threshold adaptable, we scale it based on the range between the maximum and

minimum distances. This scaled threshold determines which points are pruned: any

point exceeding the effective threshold is removed. This dynamic pruning ensures

that the editing remains controlled by eliminating outliers, improving the overall

stability and quality of the process.

This approach is particularly crucial in regions with complex geometry, where

a higher Gaussian density is needed to accurately represent the edited scene. Ad-

ditionally, the binding inheritance strategy ensures that each triangle consistently

has at least one splat attached, even after pruning. This prevents issues such as

floating artifacts or loss of detail in occluded regions. This comprehensive adaptive

control strategy enables more accurate and efficient representation of complex scenes

without unnecessary computational overhead.
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Chapter 5

Experiment and Evaluation

In this chapter, we present the results and performance evaluation of our model,

showcasing the editing outcomes and conducting an ablation study by comparing

various ablated models with GaussCraft. Lastly, we address the limitations and

discuss potential improvements.

5.1 Implementation

We have extended the renderer provided by 2DGS [10] to accept input meshes and

render edited scenes based on the type of deformed mesh provided. All models were

trained for 30,000 iterations, with the Adam optimizer [52] used for parameter opti-

mization. The learning rates for position, feature, opacity, scaling, and rotation were

initialized at 0.005, 0.0025, 0.05, 0.017, and 0.001, respectively. The position learning

rate decays from 0.005 to 0.00005 over the course of training, with a delay multiplier

of 0.01 and a maximum step count of 30,000. Also, We implement activating binding

inheritance every 100 iterations from iteration 500 until the completion of training.

All experiments were conducted on a single NVIDIA RTX 3090 TI GPU.
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5.2 Dataset and Metrics

Figure 5.1: Comparison of Original rendering result and Edited rendering result on
Lego bulldozer and a chair in NeRF Synthetic Dataset [7] (Lego: 14.9 FPS, Chair:
14.7 FPS)

To demonstrate the performance of our model, we utilized several datasets, including

the Lego bulldozer and chair from the NeRF synthetic dataset [7], as well as scans

83 and 105 from the DTU dataset [12], and character from the Mixamo dataset [53].

Additionally, we tested our model on several custom dataset, which is generated with

100 random views from the upper hemisphere using Blender for training. Synthetic

datasets were primarily used for both qualitative and quantitative experiments due

to their ability to provide comprehensive views.

40



Figure 5.2: Comparison of Original rendering result and Edited rendering result on
Scan 83 and 105 in DTU Dataset (Scan83: 14.0 FPS, Scan105: 14.6 FPS)[12]

Since there are no existing edited scenes, obtaining the ground truth for new view

synthesis is challenging. To address this, we adopted the same quantitative evaluation

method as NeRF Editing [9], incorporating character from the Mixamo [53]. This

approach allowed us to generate ground truth for the edited scenes. We selected

100 random views for testing from the upper hemisphere of the edited ground truth

of Mixamo. For quantitative evaluation, we assessed the model using the following

metrics:
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5.2.1 Structural Similarity Index Measure (SSIM)

The Structural Similarity Index Measure (SSIM) [54] is a perceptual metric used to

evaluate the visual similarity between two images. It assesses differences in structural

content, luminance, and contrast. SSIM between two images x and y is given by:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

In this formula, µx and µy represent the mean intensities of images x and y, σ2
x and

σ2
y denote their variances, and σxy is the covariance between them. The constants C1

and C2 are included to avoid instability when the denominator is close to zero. SSIM

values range from -1 to 1, with a value of 1 indicating perfect structural similarity

between the two images.

5.2.2 Learned Perceptual Image Patch Similarity (LPIPS)

The Learned Perceptual Image Patch Similarity (LPIPS) [55] metric quantifies the

perceptual similarity between two images by comparing deep features extracted by

a neural network. The LPIPS distance is computed as:

LPIPS(x, y) =
∑
l

1

HlWl

∑
h,w

∥ŷhl − x̂h
l ∥22

Here, x̂h
l and ŷhl are the feature representations extracted from layer l of a pre-

trained network, while Hl and Wl are the height and width of the feature map at

that layer. A lower LPIPS value implies that the two images are more perceptually

similar.

5.2.3 Peak Signal-to-Noise Ratio (PSNR)

Peak Signal-to-Noise Ratio (PSNR) is a commonly used metric for assessing the

quality of image reconstructions. It is defined as:
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PSNR = 10 log10

(
L2

MSE

)
where L is the maximum possible pixel value (often 255 for 8-bit images), and

MSE represents the Mean Squared Error between the original and reconstructed

images. Higher PSNR values implies better image reconstruction quality.

Using these metrics, we were able to quantitatively evaluate the model’s perfor-

mance on the provided Mixamo models.

5.3 Qualitative Results

Figure 5.3: Comparison of Original rendering result and Edited rendering result on
custom Dataset (14.7 FPS)

We compared the rendering results of 2D Gaussian Splatting with the edited scenes

using GaussCraft from various viewpoints. Figure 5.1 shows the comparison using

the Lego bulldozer and chair scenes from the NeRF synthesis dataset. For the Lego

43



Figure 5.4: Comparison of Original rendering result and Edited rendering result on
custom Dataset (15.1 FPS)

bulldozer, we lowered the bulldozer’s shovel and demonstrated that the details are

preserved as in the original scene. In the chair scene, we winded the legs of the chair,

illustrating that our method works well across different types of edits.

Additionally, as illustrated in Figure 5.2, we compared two scenes from the DTU

dataset. In the first scene, we stretched the ear and moved arms of a doll, and in the

second scene, we stretched the doll’s nose. Since the DTU dataset is generated by

capturing real-world scenes, this comparison also verifies that our model performs

well in real-world scenarios.

Finally, we compared results using a custom dataset in figure 5.3 and 5.4, with

various edited scenes. These examples demonstrate that our model is versatile and

capable of accommodating a wide range of edits, allowing users to customize scenes

as they desire.

As shown in Figure 5.5, the reconstructed mesh from 2DGS with multi-view
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Figure 5.5: Difference of capturing detail between mesh and rendered scene.

images is not perfect. Despite these imperfections, users can still achieve reasonable

performance in the edited scene by utilizing deformations of the mesh. This is because

the mesh serves as an intermediate representation that enables interactive editing.

Therefore, even if the mesh is not an exact representation, the model can still produce

high-quality results. However, it is important to note that if the mesh reconstruction

is too abstract, it may pose challenges for precise deformation.

5.4 Quantitative Results

Model SSIM ↑ LPIPS ↓ PSNR ↑ Time ↓

GaussCraft 0.9642 0.0292 24.1437 10m
GaussCraft 3D 0.9640 0.0296 24.0084 10m 20s
NeRF-Editing 0.9463 0.0372 21.0037 16h

Table 5.1: Quantitative Comparison between various methods. Bold indicates the
best performance
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Figure 5.6: Visual comparisons of the Ground Truth and models

In our quantitative analysis, we employed two triangular meshes provided by

Mixamo. One mesh was used during training instead of the reconstructed mesh

from 2D Gaussian Splatting, while the other served as a stand-in for the deformed

mesh. It is important to focus on that these provided meshes are simpler than

the reconstructed mesh, primarily due to their lower vertex and face counts. This

simplification may introduce additional artifacts in the final output compared to

using a fully reconstructed mesh.

Given the limited prior work specifically addressing explicit representation or edit-
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Figure 5.7: Zoom in Comparison between GaussCraft 3D and GaussCraft

ing using 2D/3D Gaussian splatting, our method introduces the first user-editable

real-time rendering approach in this domain. To evaluate its performance, we com-

pare our quantitative results with an alternative method that retains the z-axis in

2D Gaussian splatting within local space, which we refer to as ”GaussCraft 3D.”

Additionally, we compare our approach to the NeRF-based implicit editing method,

NeRF-editing [9]. For NeRF-editing, we trained for 300,000 iterations and used

two meshes provided by Mixamo, rather than reconstructed meshes using the NeuS

method [50], to ensure a fair comparison. As shown in Table 5.1, GaussCraft con-

sistently outperforms the other methods across all metrics. This demonstrates that,

with shorter training time and real-time rendering capabilities, it can achieves better

quality results.
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We also present qualitative results in Figures 5.6 and 5.7. Notably, in view 3 of

Figure 5.6, GaussCraft produces fewer artifacts than GaussCraft 3D. Furthermore,

a closer inspection in Figure 5.7 reveals more pronounced artifacts in GaussCraft 3D

that are not well-aligned with the surface. These findings suggest that eliminating

the z-axis in local scaling and rotation during 2D Gaussian splatting leads to better

outcomes, with fewer artifacts.

5.5 Ablation Study

Model SSIM ↑ LPIPS ↓ PSNR ↑

Ours 0.9642 0.0292 24.1437

w/o ADC 0.9586 0.0379 23.1135

w/o Lposition & Lscale 0.9642 0.0292 24.1393

w/o pruning 0.9641 0.0291 24.1328

Table 5.2: Ablation study on the performance of different model variants. Bold indi-
cates the best performance, while underlining indicates the second-best performance.

In this ablation study, we systematically evaluate the impact of key components

of our model by selectively removing them and observing the resulting changes in

performance metrics.

Adaptive Density Control (ADC): When ADC is removed from GaussCraft,

the model’s ability to accurately represent complex regions, such as surfaces with

intricate patterns, hair, or repetitive textures, is significantly impaired. As shown in

Table 5.2, the absence of ADC results in a noticeable decline across all metrics, par-

ticularly in SSIM and LPIPS. This underscores the crucial role of ADC in capturing

fine details and maintaining high visual quality.

Position and Scale Loss Functions: Next, we assess the impact of removing

the position and scale loss functions, which are essential for preventing Gaussians

from becoming excessively large or deviating from their intended positions. Although
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the model continues to produce reasonable results in trained scenes without these

loss functions, the lack of constraints can lead to artifacts when scenes are modi-

fied, due to Gaussians that are either too large or poorly positioned. As indicated

by the metrics in Table 5.2, this manifests as a slight degradation in performance,

particularly in the PSNR metric, which measures the structural similarity of the

images.

Pruning: Finally, we evaluate the effect of not pruning Gaussians that have

moved too far from their expected locations. Without pruning, the model becomes

less robust, as Gaussians that are misaligned contribute to artifacts, particularly in

2D representations. This is reflected in the slight decrease in SSIM and PSNR metrics

compared to the complete GaussCraft model. The pruning process is therefore es-

sential for maintaining the integrity of the rendered images, ensuring that Gaussians

do not introduce unintended visual distortions.

Overall, these findings highlight the importance of adaptive density control, as

well as the position and scale loss functions, in achieving high-quality, artifact-free

renderings.
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5.6 Limitations

Figure 5.8: Lighting failure case

The limitations of our method can be categorized into two main areas: lighting and

mesh issues.

First, our method is trained using multi-view images captured in a static lighting

environment. As a result, all Gaussians are optimized based solely on the specific

scene provided during training. Since our method binds Gaussians to the faces of the

mesh, we do not account for changes in shadows or lighting based on edited results.

As we can observe from figure 5.8, after editing the scene, shadow and lighting

still remain same. To address this limitation, future work could explore enabling

the model to perform relighting based on the edited scenes. Existing relighting

techniques using Gaussian splatting [56, 57] could be integrated into our model to

overcome this challenge.

50



Figure 5.9: Result Comparison between two different meshes

Secondly, since this method binds 2D Gaussians to mesh faces, it can encounter

challenges when the mesh is not well-defined. For example, if the reconstructed mesh

has too few faces, even with adaptive density control, the model may fail to generate

a sufficient number of Gaussians to support effective editing. This limitation is

generally not an issue when working with meshes reconstructed from 2D Gaussian

splatting. However, when using pre-existing meshes, such as those from Mixamo,

artifacts may arise, resulting in an inability to accurately capture the edited scene. As

shown in Figure 5.9, which compares results from training with a reconstructed mesh

and a Mixamo-provided mesh (used for evaluation), there is a noticeable difference

in quality. To address this, future work could focus on subdividing mesh faces,

especially those with larger scales or more complex geometries, to ensure the mesh

can better represent the scene after editing.
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Chapter 6

Conclusion

In conclusion, this paper introduces GaussCraft, a pioneering approach in real-time

scene editing that utilizes 2D Gaussian Splatting for high-quality, deformable mesh

reconstruction. Our method distinguishes itself by simplifying local space dimen-

sionality and incorporating user-defined editing capabilities, offering a more efficient

and consistent alternative to traditional techniques. By omitting the z-axis in the

local coordinate system, GaussCraft achieves faster optimizations and smoother re-

sults, making it particularly suitable for real-time applications. The integration of

densification and pruning techniques further enhances the precision of mesh editing,

ensuring high fidelity in the final output.

GaussCraft is applicable to both real and synthetic scenes for object editing, and

it is highly adaptable to a wide range of scenarios. Compared to previous editing

methods based on implicit representations [9], GaussCraft offers significantly faster

training times, real-time rendering capabilities, and produces high-quality results. Its

efficiency makes it well-suited for interactive applications, where users can quickly

manipulate scenes without long processing delays.

Looking ahead, there are numerous directions for extending GaussCraft’s func-

tionality. Future work could explore the integration of relighting or color modification

within the 2D Gaussian-based editing framework, allowing for more dynamic ad-

justments to lighting and color schemes directly within scenes. Additionally, Gauss-

Craft’s potential could be expanded by incorporating more advanced user interaction
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features. For instance, the model could serve as a real-time, interactive scene editor,

enabling users to make immediate adjustments to objects within a scene.

Further possibilities include combining scene editing with style transfer tech-

niques, allowing users to modify the visual appearance of objects by applying specific

artistic styles. Another interesting future work is editable object manipulation within

a single image instead of multi-view images, possibly through the use of transformer-

based models, which would enable to generate multi-view images based on simgle

image. Moreover, GaussCraft could be extended to support text-based scene edit-

ing, allowing users to describe desired modifications using natural language, further

enhancing its ease of use and accessibility for a broader range of applications.

By building on these ideas, GaussCraft could evolve into a various tool for scene

editing across many different domains, from game development and animation to

AR/VR applications, providing users with a powerful, efficient, and flexible editing

platform.
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