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Abstract

Convolutional Neural Networks (CNN) have been widely employed in human pose estimation tasks. However, re-
cently, transformers with self-attention features have shown outstanding performance when applied to large datasets.
Despite this trend, there is a scarcity of approaches addressing Non-Human Primate (NHP) pose estimation us-
ing transformers. This project aims to bridge this gap by utilizing a transformer-based model, an underexplored
method in NHP pose estimation. This project adapts one of the most recent and effective models with transformer,
previously employed in multiple human pose estimation tasks, and fine-tunes it using an NHP dataset. The inherent
limitations of transformer models, such as the need for extensive data and high computational costs, are overcome
through transfer learning with a pre-trained model. A comparison with a CNN-based model on the same dataset
reveals that adopting a transformer-based approach for NHP pose estimation enhances performance. Moreover,
ablation study addresses the decision to freeze layers and provides evidence of underfitted tail keypoints. These
findings suggest that the self-attention feature of transformers is effective not only for human pose estimation tasks
but also for NHP pose estimation. This project has potential to inspire further research in other vision tasks with
limited data, demonstrating that transformers can offer viable solutions when combined with transfer learning. The
code used for this study can be found at: Gitlab or Github.
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1 Introduction

In recent years, the study of non-human primates (NHP) pose estimation has become a critical research area due
to its applicability and significance across a diverse range of fields, such as neuroscience, psychology, anthropology,
epidemiology, and ecology. Further, the development of automatic pose detection methodologies plays a crucial role
in improving NHP welfare and conservation efforts. Nevertheless, NHP pose estimation research presents several
challenges, including the homogeneity of body textures and the vast number of potential pose configurations,
complicating the identification of instances and joints in images. Moreover, the limited availability of datasets and
research on NHP pose estimation has resulted in the field being less developed compared to human pose estimation.

Historically, early approaches to pose estimation were reliant on physical marker-based methods [29], which
proved inefficient and difficult to apply, particularly for monkeys. The advent of deep learning, however, has
spurred the exploration of various techniques to address pose estimation tasks [18, 19, 20, 31], such as employing
convolutional neural networks (CNN) based models for NHP pose estimation [25, 26, 27]. Recently, transformers
[1], initially designed for natural language processing tasks, have gained significant attention in the computer
vision domain. For instance, Vision Transformers (ViT) [2] have demonstrated the feasibility of using image
patches in transformer encoders without CNN. Drawing inspiration from object detection tasks with transformers
[33, 34], recent research has reported promising results for multi-person pose estimation using transformers [3, 4, 13].
However, NHP pose estimation faces unique challenges due to the lack of extensive datasets. To overcome this
limitation, the transfer learning approach presented in ”Transferring Dense Pose to Proximal Animal Classes”
[27] offers a viable solution by adapting human pose models to chimpanzee models. In this project, a NHP pose
estimation model is introduced using transformers and transfer learning from human models.

Proposed approach of this project adopts the architecture of PETR [13], one of the recent high-performance
end-to-end transformer-based multi-person human pose estimation model. The PETR model is fundamentally
grounded in the basic transformer architecture, as introduced by [1]. Owing to its relative simplicity in comparison
to alternative transformer, such as the Vision Transformer (ViT) [2], which are tailored for visual tasks, the basic
transformer demonstrates greater adaptability and suitability for fine-tuning and transfer learning. The architecture
of model can be divided into three components: a backbone network, an encoder, and a decoder. ResNet-50 serves
as the backbone, extracting multi-scale feature maps from images, which are then fed into a fully connected layer
to obtain concatenated feature tokens. Subsequently, the encoder refines the multi-scale visual feature memory.
The pose decoder predicts multiple body poses in parallel, employing multiple pose queries and visual feature
memory with pose-to-pose attention and feature-to-pose attention. A separate joint decoder refines the poses and
outputs the results, following processes similar to the pose decoder. Building on the success of prior work [27],
this work utilizes a pre-trained model using the COCO Keypoint 2017 dataset [37] as a starting point for transfer
learning. Data augmentation techniques, such as random cropping, flipping, and resizing, are applied to overcome
data scarcity with transfer learning. The optimal epoch for fine-tuning the pre-trained model is determined using
the Open Monkey Challenge validation set [32].

Training only on the Open Monkey Challenge dataset, the project achieves performance comparable to models
trained on larger datasets. The project conducts a comprehensive evaluation of the model and assesses individual
keypoint performance by comparing this approach to other CNN-based models on the same dataset. These results
demonstrate that employing transformers for NHP pose estimation can be a successful option, overcoming limitations
through transfer learning. In summary, the contributions of this project can be divided into three parts:

• Adapt one of the recent high performance transformer-based multi-person human pose estimation model to
address the non-human primate (NHP) pose estimation task.

• Utilize transfer learning and data augmentation to overcome the main limitation of transformer-based archi-
tecture, which is the requirement for a large dataset.
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• Upon examining the performance of Transformer-based models in comparison to CNN-based models on the
same dataset, as presented in previous research [32], it is evident that the Transformer-based approach demon-
strates similar or higher performance over its CNN-based counterparts.

2 Background

2.1 2D Multiple Object Pose Estimation

Pose estimation is a method for detecting key point of the object and classifying it. Input types are usually image or
video, and output of the pose estimation model is the coordinates of the keypoint in the images or video. Number
and type of keypoint can vary, and there are several ways to approach to model such as skeleton-based model and
contour-based model. However, the most important part of pose estimation is how it can be approached.

It can be classified into three main categories depending on the approach:

Figure 1: Comparing three methods of Pose Estimation [7]

• Top - down method detects each person (object detection) first and with crop boxes from object detector it
inferences key points [5]. With cropped box single person detection can be used. Due to reliance on object
detection, performance of detector is very important, and if there are many instances, slow inference can
occur.

• Bottom – up method detects all the key points first. After that it groups the key points in instance level.
However, grouping is very challenging due to hardness for finding relationship between key points. For efficient
post-processing some methods were proposed: Part Affinity Fields (PAFs) [19] and associative embedding
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(AE) [6]. It is usually faster than top-down method, but performance is often lower than the top-down
method.

• Single – stage method is the method SPM [7] proposed to overcome limitations of above two methods. It
regresses predicted value of pose to location of each object. There are several methods to improve accuracy
from SPM such as using keypoint heatmap or dynamic instance-aware convolutions [8, 9].

2.2 Transformer

Transformer was first introduced in ”Attention is all you need” [1]. It is sequence-to-sequence model which can
maintain information about order. Also, transformer efficiently overcomes limitation of other sequence-to-sequence
models which is losing information by attention method. Because of this advantage transformer is now widely used
in natural language process area [14, 15]. Recently, ViT [2] introduced transformer also can be efficiently used in
vision task such as object detection [34] and segmentation [17].

Figure 2: Architecture of Basic Transformer [1]

Function of transformer can be divided into three parts:
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• Attention mechanisms enable transformer to calculate attention score between each token. Computation
of attention score can be done by using Query, Key, and Value vector. With attention score, transformer
can understand relationship between information and decide which part of information it has to focus. In
self-attention, all Query, Key, and Value vectors originate from the same source, as the attention is directed
towards the input’s own elements.

FFNN(x) = max(0, xW1 + b1)W2 + b2 (1)

• Feed Forward Neural Network is used to process the output from previous attention layer to transfer suit
format of next attention layer.

RC(x) = Sublayer(x) + x (2)

LN = LayerNorm(x + sublayer(x)) (3)

• Residual Connection and Layer Normalization (Add & Norm) can help training transformer. Residual con-
nections involve adding input and output of sublayer, effectively creating a shortcut that helps preserve
information from previous layers. Layer normalization can be performed after residual connection. During
this process, it calculates the mean and variance of last dimension tensor, and it uses this to normalize the
values to aid in stabilizing training.

With these functions, encoders and decoders can be constructed. Each of the N encoders comprises two sublayers.
The first sublayer is a multi-head self-attention layer which means multiple self-attention mechanisms operate in
parallel. The second sublayer is a feed forward neural network, and after each sublayer, add & norm operation
supports training.

The decoder consists of three sublayers. The first sublayer is masked multi-head self-attention layer which
has similar role as first sublayer of encoder except masking is applied. The second sublayer is encoder - decoder
attention layer. Different from two previous attention layers, it is not self-attention layer. Query vectors are from
the decoder vector, but the Key and Value vectors are from the encoder vector, and this allows target sequence
pays attention to input sequence. Therefore, it measures attention scores of how input sequence influence target
sequence. The third sublayer and add & norm work same as second sublayer of encoder. Embedding and positional
encoding are required before input data for encoder and decoder to ensure proper representation and encoding of
positional information of sequences.

2.3 Transfer Learning

Acquiring sufficient dataset and computational resources, particularly GPUs, can pose a challenge in achieving
satisfactory model performance. However, the technique of transfer learning itself has emerged as a practical solution
to this problem. It involves utilizing a pre-trained model from a different task and fine-tuning it with respect to the
target dataset. This approach has been shown to yield high-performance results with less computational resources,
as compared to learning from scratch.

Transfer learning has been demonstrated to be effective across various computer vision tasks, including human
pose estimation [11], image classification [10], and object detection [34]. Building upon the success of previous
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research that demonstrated the effectiveness of transfer learning from human pose estimation to animal pose esti-
mation [27], this project employs a transfer learning approach from human pose estimation to NHP pose estimation
with transformer.

3 Related Works

3.1 Multiple Human Pose Estimation with Transformer

Convolutional Neural Networks (CNN) have been the representative approach for multi-person human pose estima-
tion tasks, with various studies employing this method [18, 19, 20, 21, 22]. However, recently, various approaches
based on transformers have been introduced, and they have achieved remarkable performance. Notably, TFPose
and PRTR [3, 4] employ the sequence-to-sequence aspect of transformers to predict K-length sequential coordinates
(where K denotes the number of keypoints) and, in turn, address the regression-based pose estimation problem
using transformers. PETR [13] has further demonstrated that transformers can facilitate a fully end-to-end process
for pose estimation.

Transformers offer a distinct advantage through their attention mechanism, which facilitates the computation
of attention scores between keypoints, consequently assisting in connecting individual keypoints. Moreover, trans-
formers have the potential to achieve superior performance compared to CNN-based approaches, provided that the
model is sufficiently deep. However, training an complicate transformer-based model demands a more extensive
dataset because of a greater number of parameters than a CNN-based model.

3.2 Non-Human Primates Pose Estimation

Compared to human pose estimation, research on non-human primate (NHP) pose estimation is relatively scarce.
Initial studies in NHP pose estimation employed marker-based approaches [23]. As deep learning-based human pose
estimation methods emerged, analogous techniques were gradually introduced for animal pose estimation [24, 25].
However, these works were limited to detecting single primates. In response, DeepLabCut (DLC) [26], a deep
learning framework for single-animal body feature detection, was developed with the potential for future multi-
animal detection. Building on this foundation, recent work approached using OpenPose to solve multiple NHP pose
estimation task [28].

Despite the successes of transformer-based approaches in various computer vision tasks, such as DETR [34] for
object detection and SAANet [16] for crowd counting, there has been no exploration of transformer-based methods
for NHP pose estimation. Recently, ”Transferring Dense Pose to Proximal Animal Classes” [27] demonstrated
that transfer learning from pre-trained models on human datasets could lead to substantial achievements in animal
pose estimation tasks. This research gives inspiration that using transfer learning can be an effective solution for
overcoming the limitation of transformers, which typically require large dataset, thus offering a useful approach in
field with limited data. Consequently, the present study aims to demonstrate the effective application of transformers
to the NHP pose estimation task, building upon the insights gained from transfer learning techniques.

Building upon the exceptional performance of transformer-based models in human pose estimation and the
demonstrated success of transfer learning from pre-trained models on human datasets, the current study presents a
pioneering approach to non-human primate pose estimation utilizing transformers. Overcoming dataset limitations
is made possible through the application of transfer learning from pre-trained human keypoint models, as evidenced
by [27]. Moreover, data augmentation techniques, proved by [9], are employed to further enhance the model’s
performance and generalization capabilities.
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4 Methodology

4.1 Dataset / Baseline Model

4.1.1 Dataset Description

1

2 "filename": string,

3 "species": string,

4 "bbox": [x, y, w, h],

5 "landmarks": [x1, y1, ..],

6 "visibility": [v1, v2, ..]

Figure 3: Open Monkey Challenge Dataset Description and Annotation [32]

This project utilizes the open monkey challenge dataset to develop a model for non-human primate (NHP)
pose estimation. The dataset is comprised of 111,529 images of NHPs collected from the Internet, three National
Primate Research Centers, and the Minnesota Zoo. 111,529 images are divided into three subsets: training (60%,
66,917 images), validation (20%, 22,306 images), and test (20%, 22,306 images). Each image is annotated with five
variables: filename, species, bbox, landmarks, and visibility.

Filename variable contains the name of each image, while the species variable identifies the species of the NHP
in each image. Since this project focuses on pose estimation, it does not consider the species variable. Bbox variable
provides the bounding box information for each NHP in each image. The x and y coordinates correspond to the
upper left point of the bounding box, while the w and h variables represent the width and height of the bounding
box. This variable can also be used for training object detection tasks.

Landmarks and visibility variables, in combination with the bbox variable, play a crucial role in training,
validation and evaluation in the project. The landmarks variable provides the coordinates and visibility for each
keypoint used in training, validation and evaluation. Specifically, X1 and Y1 represent the coordinate of the first
keypoint, while V1 denotes its visibility.
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4.1.2 Baseline Model

This study adopts on the high-performance capabilities of a multiple human pose estimation transformer model
which names PETR [13]. PETR employs a basic transformer [1] to address the multiple human pose estimation
task. Compared to alternative transformers specifically designed for visual tasks, the basic transformer boasts a
more straightforward architecture, thereby facilitating transfer learning. Additionally, PETR is an end-to-end and
single-stage method model, so it eliminates the need for hand-crafted modules.

The pre-trained model utilized in this study is trained on the COCO 2017 Keypoint dataset [37]. This dataset
contains multiple instances annotated with 17 keypoints, which coincides with the number of keypoints in the
Open Monkey Challenge dataset [32]. As a result, employing this pre-trained model streamlines the fine-tuning
process by maintaining a consistent number of keypoints for prediction. Moreover, the chosen model demonstrates
superior performance compared to models employing larger backbone networks [42, 43]. Consequently, with reduced
computational complexity and memory requirements, the pre-trained model outperforms its counterparts while
optimizing resource usage.

4.2 Proposing architecture

4.2.1 Architecture Details

Figure 4: Architecture of PETR [13]

Architecture of PETR which achieved success in multiple human pose estimation can be divided into three compo-
nents: the backbone network, encoder, and decoder. The ResNet [30] serves as the backbone network, extracting
multi-scale feature maps from the input image. These multi-scale feature maps are subsequently projected onto 256
channels through a spatial-wise fully-connected (FC) layer, ultimately yielding flattened feature tokens. Afterwards,
the concatenated feature tokens are fed into the visual encoder, which passes them through six deformable encoder
layers, each containing a multi-scale deformable attention module and a feed-forward nerual network (FFNN). This
process produces a multi-scale visual feature memory as an output.
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The decoder’s architecture is partitioned into two modules: the pose decoder, which predicts the pose, and the
joint decoder, which refines the prediction from the pose decoder. The pose decoder receives embedded pose queries
and calculates an attention score that enables the queries to interact with one another in a self-attention mod-
ule (pose-to-pose attention). Afterward, each query extracts features from the visual multi-scale feature memory
obtained from the encoder using a deformable cross-attention module (feature-to-pose attention). This process gen-
erates instance-aware query features, which are then fed into multi-scale prediction heads comprising a classification
head and a pose regression head. The classification head’s linear projection layer (FC) predicts the confidence score
for each object, while the pose regression head’s multi-layer perceptron predicts the relative offsets (K reference
points).

The joint decoder receives K randomly initialized joint queries, predicted by preceding pose decoder and cal-
culates an attention score that enables the queries to interact with one another in a self-attention module (joint-
to-joint attention). After this, each query extracts features from the visual multi-scale feature memory obtained
from the encoder using a deformable cross-attention module (feature-to-joint attention). The pose regression head’s
multi-layer perceptron predicts 2D joint displacement ∆J = (∆x,∆y). Furthermore, each pose and joint decoder
layer comprises three individual layers arranged in the structure described above, and these decoder layers operate
progressively to estimate the pose coordinates.

4.2.2 Data Preprocessing

1

2 "filename": string,

3 "species": string,

4 "bbox": [x, y, w, h],

5 "landmarks": [x1, y1, ..],

6 "visibility": [v1, v2, ..]

Convert

1 "images": {
2 "filename": string,

3 "height": int,

4 "width": int,

5 "id": imgid

6 },
7 "annotations": {
8 "num_keypoints": int,

9 "area": int,

10 "keypoints": [x1, y1, v1, ...],

11 "image_id": imgid

12 }

Figure 5: Converting Annotation format: Open Monkey Challenge dataset [32] to COCO keypoint dataset [37]

Data pre-processing is an essential step in preparing data for model training. In this project, it is imperative to
note that the COCO keypoint type dataset [37] annotation format is the only supported format for training. As
such, it becomes necessary to convert the data to this format, a process which will be explicated below.

Specifically, the filename in the image category of the COCO annotation type is directly transferred to the file-
name of the open monkey challenge dataset [32] annotation. The height and width of the COCO format correspond
to the third and fourth elements of the bbox of the open monkey dataset, respectively. For the ID attribute, an
integer value is extracted from the filename itself, that a file named ”train 0001555.jpg” would have an ID of 1555.

Moreover, the num keypoints attribute within the annotation box should be set to 17, and the area should be
calculated as the product of the height and width. The keypoints attribute stores the coordinates and visibility
information for each keypoint. The x1 and y1 attributes represent the x and y coordinates of the first landmark,
while the v1 attribute indicates whether the first landmark is visible or not. Lastly, the image id has the same
information as the id attribute found in the images box.
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Furthermore, in order to address the challenge of limited data availability, the present study applies a technique
referred to as data augmentation. This technique can be divided into three methods: random resize, random flip,
and random crop. Random resize method involves the manipulation of image dimensions either by zero-padding
or by employing a resizing function. In instances where the initial image is smaller than the desired dimensions,
zero-padding is utilized to enlarge the image. Conversely, when the original image exceeds the target size, a resizing
function is employed to reduce the dimensions accordingly. Random flip can be done by flipping input images either
horizontally or vertically with respect to symmetric pairs. In this project, symmetric pairs can be defined as both
eyes, shoulders, elbows, wrists, knees, and ankles. Finally, random crop is implemented by selecting regions within
the input images and cropping them to a decided width and height. If the decided size is bigger than the given
image, zero padding is applied to make the given image to the decided size.

4.2.3 Fine Tuning

Figure 6: Fine tuning from COCO 2017 dataset [37] to Open monkey challenge dataset [32]

Fine-tuning is a crucial step that involves modifying a pre-trained model to achieve the best performance for a
particular task. When substantial gaps exist between the pre-trained task and the target task, modification to the
pre-trained model’s architecture is necessary. However, in the context of human pose estimation and non-human
primate pose estimation, these tasks share sufficient similarities, and the number of keypoints for the COCO 2017
keypoint dataset [37] and the Open Monkey Challenge dataset [32] is identical. Consequently, the same architecture
can be employed for both the human pose estimation model and the non-human primate pose estimation model.

To prevent the loss of information from the pre-trained model during fine-tuning, the learning rate is scaled to
10% of the previous training. Additionally, to reduce training time, parameters other than the encoder and decoder
are frozen. The process of selecting which layers to freeze is carefully considered through ablation study, which will
be discussed later.

The self-attention module is a crucial component of the pose estimation model as it enables pose queries to
interact with one another by computing attention scores. This feature is particularly useful in the context of the
PETR [13] model, which can learn new features from non-human primate datasets by updating the trained features
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from human datasets. Figure 6 demonstrates that this process can be achieved by using the most similar keypoint
from the pre-trained model to update new keypoints that were not initially annotated in the human dataset.
Especially, the head and neck keypoints of non-human primates can be updated from the ear keypoints of the
pre-trained model, and the hip keypoint can be updated from either the left or right hip keypoints. Keypoints that
are annotated for the same part as the human dataset will also be updated to fit the non-human primate feature.
However, updating the tail keypoint of non-human primates from the keypoint of another hip is a challenging task as
the pre-trained model lacks a comparable feature for non-human primates. This issue will be thoroughly evaluated
and addressed in evaluation and ablation study.

4.3 Training / Validation

4.3.1 Training

This project employs a transfer learning methodology to address the challenge of non-human primate pose estimation
which is inspired from [27]. A pre-trained model based on the COCO 2017 keypoint dataset with 100 epochs is
utilized, leveraging its existing knowledge to enhance the estimation of 17 keypoints for one non-human primate
in each of the 66,916 images. Given the inherent similarities between the human and non-human primate pose
estimation tasks, as well as the identical number of keypoints in both datasets, this project adopts the same
architecture without modifications before updating the pre-trained model’s parameters. This transfer learning
technique enables the project to realize two significant advantages: minimizing training time and compensating for
the shortage of available data.

The primary objective of training is to minimize the error value computed by appropriate loss functions, which
plays a vital role in the successful execution of the given task. In this study, four loss functions are employed during
the training process, namely, Classification loss, L1 loss, OKS loss, and Heatmap loss, as proposed in PETR [13].
The Classification loss function is used to update the parameter of the classification head in the pose decoder, which
predicts the confidence score, like deformable DETR [34].

OKS(P, P ∗) =

∑K
i=1 exp(−∥Pi−P∗

i ∥2

2s2k2
i

)δ(vi > 0)∑K
i=1 δ(vi > 0)

Figure 7: Formula for Object Keypoint Similarity (OKS) loss [37]

L1 loss, which functions similarly to Manhattan distance, and the Object Keypoint Similarity (OKS) loss func-
tions operate as the optimization criteria for fine-tuning the parameters of the pose and joint regression head. This
module is tasked with estimating the pose, and subsequently refining the predicted pose through the employment of
the pose and joint decoder. Nevertheless, the L1 loss function demonstrates a limitation concerning the inconsistent
scales for small and large poses, despite possessing similar relative errors. To counter this drawback, the OKS loss
function which consider area of the bounding box (s2) is integrated alongside the L1 loss function, considering both
the area of the bounding box and the accuracy of pose prediction. Furthermore, OKS loss will be discussed more
in the validation part.

Heatmap loss function is applied to update the parameters of the visual feature encoder by computing a modified
version of the focal loss [35], which assesses the disparity between the ground truth heatmap and the predicted
heatmap. The generation of the predicted heatmap involves extracting feature tokens from the encoder output and
subsequently reshaping these tokens to their original spatial dimensions. A deformable transformer encoder is then
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applied to the reshaped feature tokens, yielding the predicted heatmap. As a result, the overall loss function can
be expressed as illustrated in Figure 8.

Overall Loss = Classification loss + λ1(L1 loss) + λ2(OKS loss) + λ3(Heatmap Loss)

Figure 8: Overall loss (λ1, λ2 and λ3 are weights of loss)

Moreover, for optimization, the Adaptive Moment Estimation optimizer [36] (Adam) with a base learning rate
of 2 × 10−5, a momentum of 0.9, and a weight decay of 1 × 10−4, is selected. The learning rate is scaled to 10% of
the pre-training model’s learning rate, as indicated in fine-tuning. The Adam optimizer incorporates an adaptive
learning rate and momentum feature, which allows the model to fit the gradients of varying magnitudes and smooth
out the optimization process.

4.3.2 Validation

Figure 9: Graph of accuracy for each epoch on Validation Set
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AP@ε =
1

17J

J∑
j=1

17∑
i=1

δ(OKSij ≥ ε)

Figure 10: Formula of Average Precision at ε

Validation is a critical step in the training of a machine learning model to prevent overfitting and determine the
optimal point to stop training. In this project, a validation set consisting of 22,306 images with single non-human
primate annotation is used.

To evaluate the accuracy of the model on the validation set, the average precision metric is employed. It is based
on the object keypoint similarity (OKS) loss which can be found from figure 7 and 10. The OKS loss is calculated
using the Euclidean distance between the predicted keypoint and the ground truth keypoint (|Pi − P ∗

i |), where s2

denotes the area of the bounding box. Also, the visibility of the ith keypoint (vi) assists the model in determining if
the ith keypoint should be included when calculating the loss. The average precision metric considers the individual
weight of each keypoint (ki) which is a part of the OKS loss and is suitable for overall evaluation for each epoch.

Specifically, the AP50 and AP75 metrics represent the average precision at 0.5 and 0.75, respectively. The mean
average precision (MAP) is calculated by calculating mean of the average precision across all object scales, ranging
from 0.5 to 0.95, in increments of 0.05. The average precision large (APL) metric which is used to evaluate the MAP
for images with an area larger than 962, proves helpful for assessing the model’s performance on larger objects.

The graph presented in figure 9 shows the model’s performance on the validation set at different epochs. The
accuracy of the model does not improve beyond epoch 12 in any of the evaluation criteria. Therefore, it can be
defined that the model reaches a saturation point at epoch 12. These findings suggest that due to the transfer
learning process from a pre-trained model that underwent 100 epochs, the optimal epoch for the current model was
attained at an accelerated pace.

5 Experimental Evaluation

5.1 Experimental setting

In this study, the proposed PETR-based model for NHP pose estimation was trained and evaluated using a virtual
environment powered by Amazon Web Services (AWS). The hardware specifications for this virtual environment
include an Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz, a Tesla-T4 GPU, and 16GB of memory. The
software stack employed for this project consists of Python as the programming language, PyTorch [44] as the deep
learning framework, and OpenMMLab which is composed with mmcv [46] and mmdetection [45] as the platform
for the implementation of the model for Non Human Primates pose estimation. The evaluations were conducted on
the test set of the Open Monkey Challenge dataset [32] for fair comparison.
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5.2 Quantitative results

PCK@ϵ =
1

17J

J∑
j=1

17∑
i=1

δ

(
∥Pi − P ∗

i ∥
W

< ϵ

)
(4)

Figure 11: Formula of PCK at ϵ [19]

Evaluation is a crucial aspect of deep learning in which the performance of a model is assessed. This project is
evaluated on Open Monkey challenge test set which is composed of 22,306 images for unbiased evaluation. For
evaluation metrics, this project utilizes two widely adopted evaluation metrics, namely the Average Precision (AP)
and Probability of Correct Keypoint (PCK).

Both metrics rely on Euclidean distance as a measure of accuracy. Specifically, Average Precision (AP) was
utilized as the primary metric for overall assessment, taking into account the varying weights assigned to each
keypoint, similar to the validation process. Meanwhile, the Percentage of Correct Keypoints (PCK) was employed
for the evaluation of individual keypoints. In line with previous research [32], this project also uses the COCO
keypoint challenge weights (ki) for evaluation on the same dataset, disregarding visibility for OKS loss to ensure
a fair comparison with earlier approaches. Thus, the key difference between the OKS loss applied in training and
validation and the one used in evaluation is whether visibility is considered or not. PCK, on the other hand, which
was employed to determine the accuracy of individual keypoints, calculates the results based on number of instances
J , width of the bounding box W , and spatial tolerance for correct detection ϵ that determines if the predicted
keypoint is considered correct.

The two aforementioned metrics were utilized to evaluate the performance of the current model relative to other
models that employ different CNN architectures. The project compares the following models which are introduced
by [32]: Deeplabcut [26], CPM [38], Hourglass [39], HRNet-W32, HRNet-W48 [40], SimpleBaseline (ResNet 152),
and SimpleBaseline (ResNet 101) [41] which are top-down methods, HigherHRNet-W32, and HigherHRNet-W48
[42] which are bottom-up methods.
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5.2.1 Overall Evaluation

Model AP@0.5 AP@0.6 AP@0.7 AP@0.8 AP@0.9 mAP

DeepLabCut 92.3 89.7 83.9 74.1 52.6 73.2
CPM 91.8 86.1 78.9 69.6 54.2 72.9
Hourglass 91.3 85.7 80.8 74.7 63.8 74.5
HRNet-W32 89.4 80.6 71.0 64.6 65.7 70.7
HRNet-W48 90.2 85.7 80.8 74.7 63.8 76.5
SimpleBaseline (ResNet 152) 89.5 84.8 81.2 76.9 67.8 78.5
SimpleBaseline (ResNet 101) 97.2 82.6 65.9 46.9 31.4 65.3
HigherHRNet-W32 88.0 79.5 57.3 32.0 20.0 59.1
HigherHRNet-W48 91.5 82.6 65.9 46.9 31.4 65.3
My Model 93.8 93.7 92.4 87.9 60.0 80.7

Table 1: Comparison with AP matrix with different threshold on OpenMonkeyChallenge [32] test set.

Table 1 displays the performance of the model developed in this project, by comparing it with other models by using
the average precision. Each row on the table represents the mean precision at different threshold values ranging
from 0.5 to 0.9 with the last row being the mean. The average performance is represented by the mAP across
average of various threshold values ranging from 0.5 to 0.95 in an increasing pattern of 0.05. Additionally, all the
values on the table are rounded off to one decimal place to make it intelligible for comparison.

Upon comparison, it is evident that the model developed in this project demonstrates superior overall perfor-
mance, except at the threshold value of 0.5 and 0.9. This outcome implies that a transformer-based approach
could potentially deliver enhanced results for non-human primate pose estimation tasks compared to a CNN-based
method. It is crucial to agree that the high performance of the transformer model might be attributable to the
increased number of parameters used. While the transformer model necessitates a larger dataset, it is capable of
achieving high performance levels.

Additionally, the technique employed in this project to overcome the limitation of a small dataset was successful.
The results indicate that transfer learning from a model trained on human datasets can be an effective solution for
non-human primate pose estimation tasks. Overall, these findings suggest that the transformer model may offer a
promising approach for improving the accuracy of non-human primate pose estimation tasks.
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5.2.2 Keypoint Evaluation

Model R.Eye L.Eye Nose Head Neck R.Shoulder R.Elbow R.Wrist L.Shoulder L.Elbow L.Wrist Hip R.Knee R.Ankle L.Knee L.Ankle Tail Mean

DeepLabCut 0.937 0.938 0.936 0.926 0.922 0.906 0.874 0.814 0.908 0.875 0.81 0.855 0.868 0.819 0.862 0.816 0.747 0.871

CPM 0.995 0.995 0.994 0.96 0.945 0.887 0.825 0.785 0.886 0.869 0.814 0.892 0.893 0.902 0.924 0.854 0.809 0.896

Hourglass 0.997 0.996 0.996 0.96 0.925 0.864 0.823 0.825 0.839 0.836 0.846 0.869 0.881 0.891 0.91 0.853 0.814 0.89

HRNet-W48 0.997 0.996 0.996 0.951 0.94 0.876 0.858 0.846 0.867 0.856 0.864 0.885 0.893 0.906 0.923 0.863 0.842 0.903

HRNet-W32 0.997 0.997 0.996 0.958 0.934 0.874 0.844 0.828 0.86 0.857 0.844 0.867 0.898 0.897 0.921 0.854 0.83 0.897

SimpleBaseline (ResNet 152) 0.997 0.996 0.996 0.954 0.942 0.868 0.855 0.842 0.864 0.858 0.855 0.883 0.892 0.907 0.921 0.855 0.838 0.901

SimpleBaseline (ResNet 101) 0.995 0.995 0.994 0.983 0.877 0.837 0.776 0.757 0.82 0.798 0.794 0.827 0.87 0.868 0.897 0.828 0.756 0.863

HigherHRNet-W32 0.962 0.979 0.981 0.978 0.856 0.798 0.724 0.782 0.661 0.62 0.804 0.71 0.899 0.804 0.897 0.82 0.633 0.818

HigherHRNet-W48 0.986 0.986 0.985 0.965 0.86 0.796 0.777 0.82 0.721 0.73 0.831 0.779 0.863 0.834 0.874 0.827 0.715 0.844

My Model 0.953 0.953 0.953 0.952 0.95 0.944 0.931 0.911 0.945 0.932 0.912 0.91 0.927 0.913 0.929 0.914 0.846 0.928

Table 2: Model comparison with PCK@0.2 metric of each Keypoint on OpenMonkeyChallenge [32] test set.

Table 2 presents an analysis of the accuracy of each keypoint compared with multiple models by using probability of
correct keypoint (PCK). Also, all values are rounded to three decimal places to make them easier to understand and
compare. The suggested model demonstrates the highest accuracy for keypoints, except for the eyes, nose and head.
While the accuracy of the suggested model for both eyes, nose and head was lower than the best-performing model
for these keypoints, it still exhibits a high level of accuracy, suggesting that further adjustments are unnecessary.
However, particular attention must be given to improving the accuracy of the tail keypoint, as compared to other
keypoints, it exhibited a comparatively lower level of accuracy. This can be attributed to two reasons: the visual
ambiguity of the tail keypoint and the transfer learning approach employed in the model.

Firstly, the tail keypoint is visually more ambiguous than other keypoints, as shown in Figure 13. It is often
far away from the body and can be easily confused with branches. Secondly, due to the transfer learning approach
used in the model, the pre-trained model on a human dataset does not include the tail feature. In the fine-tuning
process, the feature of the hip was updated to represent the tail feature of the new model. However, the features
of the tail and hip are vastly different, and the model requires further training to fit the tail feature appropriately.
Ablation study will address the underfitting of the tail feature and propose a solution to overcome this limitation.

5.3 Ablation Study

Ablation study addressed two objectives: justifying the decision to freeze layers during the fine-tuning process,
and investigating the cause of low accuracy in tail keypoint detection. The first study involved comparing the
performances of four models with different frozen layers, using the same accuracy measurement methods employed
in validation. In the second study, the project aimed to determine if transfer learning was responsible for the low
accuracy observed in tail keypoint detection by comparing an overfitted model with the optimal one. The validation
set was employed in both studies because it is more closely aligned with the training and validation processes, and
the evaluation should remain unbiased.
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5.3.1 Justification of freezing layer decision

Model AP50 AP75 APL mAP

Epoch 1 96.3 90.2 77.4 77.1
Encoder Only 96.8 91.8 79.4 79.1
Decoder Only 96.1 90.4 77.9 77.6
Epoch 2 96.9 91.6 79.5 79.2

Table 3: Comparison between models with different updated layers on OpenMonkeyChallenge [32] validation set

Table 3 illustrates the comparison of four different models, where Epoch 1 is trained for one epoch from the
pretrained model, Encoder Only is solely updated for parameters of the encoder from Epoch 1, Decoder Only is
updated exclusively for parameters of the decoder from Epoch 1 and Epoch 2 is updated for both the encoder’s
and decoder’s parameters from epoch 1.

While the model updated only for the encoder showed considerable improvement in comparison to Epoch 1,
Epoch 2 which was trained for both the encoder and the decoder produced the best results. Moreover, the perfor-
mance of the model updated solely for the decoder did not surpass that of Epoch 1, which served as the starting
point for this model.

These findings imply that training the encoder alone achieves better performance than training only the de-
coder, suggesting that if the visual feature memory is not sufficiently refined by the encoder, fitting the decoder
becomes unattainable. Consequently, the model fails to achieve high performance, even when the decoder is trained
extensively. In contrast, when both the encoder and decoder are effectively trained, the model can reach high
performance. These results guided the decision to freeze layers during the fine-tuning process.

5.3.2 Proof of underfitted tail keypoint

Model R.Eye L.Eye Nose Head Neck R.Shoulder R.Elbow R.Wrist L.Shoulder L.Elbow L.Wrist Hip R.Knee R.Ankle L.Knee L.Ankle Tail

Epoch 12 0.95 0.95 0.95 0.948 0.947 0.942 0.925 0.906 0.941 0.928 0.909 0.909 0.924 0.909 0.924 0.91 0.844

Epoch 14 0.949 0.949 0.949 0.947 0.946 0.94 0.925 0.906 0.94 0.927 0.908 0.907 0.924 0.906 0.923 0.908 0.846

Table 4: Model comparison with PCK@0.2 metric of each Keypoint on OpenMonkeyChallenge [32] validation set.

In the evaluation, transfer learning is considered the cause of low tail keypoint accuracy. During validation, epoch 12
can be viewed as the saturation point, representing the optimal model, while epoch 14 signifies a model where
overfitting has occurred. Consequently, this study presents a comparison between these two models in Table 4.

If the pretrained model encompasses every feature of keypoints for non-human primates, epoch 12 should achieve
higher accuracy than epoch 14 for all keypoints. In line with this expectation, epoch 12 exhibits equal or better
accuracy for the majority of keypoints. However, epoch 14 outperforms epoch 12 in terms of tail keypoint accuracy.
The most plausible explanation for this discrepancy is that epoch 12 is underfitted, having not been trained with
enough epochs. This outcome provides evidence supporting the analysis of low tail keypoint accuracy.

To address this issue, the project proposes modifying the loss function. Specifically, OKS loss [37] incorporates
a weight (ki) for each keypoint, where the weight for the tail keypoint can be increased to yield a higher error value.
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This adjustment would enable the model to reach the optimal point for predicting tail keypoints more rapidly.
Consequently, determining the appropriate weight value and rescaling the number of epochs could be future work
aimed at enhancing accuracy for all keypoints by concentrating on improving tail keypoint accuracy.

5.4 Qualitative results

Figure 12: Visualization results on OpenMonkeyChallenge [32] test Set

20



Figure 13: Failure cases about tail (Red dotted line shows distance between ground truths and predicted points)

5.5 Discussion

Figure 14: Observed validation performance (solid line) and potential trends with more epochs (dotted line)

In the present study, the optimal model performance was observed at the 12th epoch among the 14 models trained
with varying epoch numbers. However, as previously mentioned, it is conceivable that a model trained for more
than 14 epochs could yield improved performance. In such a scenario, the accuracy graph may exhibit a gradual,
oscillatory upward trend as Figure 14. Notably, the ablation study revealed that the tail keypoint in the optimal
model (12th epoch), is underfitted.

Moreover, this investigation is employed in the entire dataset without distinguishing between species. As a result,
future research can focus on three key objectives: checking whether the 12th epoch indeed represents the optimal
model, enhancing the accuracy of tail keypoint predictions by adjusting the weights assigned to each keypoint in the
Object Keypoint Similarity (OKS) loss function, and partitioning the dataset according to species and subsequently
improving accuracy by training models specific to each species.
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6 Limitation / Conclusion

6.1 Limitation

Owing to the extensive duration of the training process for transformer models and the limited computational
resources allocated to such projects, evaluating performance beyond 14 epochs becomes impractical. Nevertheless,
the observed trend indicates that the accuracy reaches a saturation point at 12 epochs, with the potential for further
improvement if more epochs were to be utilized. Additionally, the Open Monkey Challenge dataset exhibits an
intrinsic constraint in assessing the model’s capacity to predict poses for multiple instances, given that it exclusively
comprises annotations related to a single monkey.

6.2 Conclusion

In conclusion, this study has successfully showed the capabilities of transformer-based models in non-human primate
pose estimation, broadening their use beyond human pose estimation. By employing transfer learning and data
augmentation techniques, the challenge of limited data availability has been effectively tackled. Moreover, this
research has pinpointed a potential enhancement in tail keypoint estimation through loss function refinement.

This work significantly enriches the existing research on non-human primate pose estimation methods, em-
phasizing the versatility and robustness of transformer-based models in diverse research domains. By harnessing
transfer learning in a well-resourced domain, the study proposes a viable solution to overcome data scarcity chal-
lenges in various fields. As a result, this investigation paves the way for future advancements and innovations using
transformers in a range of vision tasks.
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A Appendix

A.1 Installation

• Clone the Final project git repository to root directory.

• Clone the MMCV git repository to Root/jxp042/thirdparty/.

• In Root/jxp042/thirdparty/mmcv directory, run:

$ MMCV WITH OPS=1 pip i n s t a l l −e .

• Clone the MMDetection git repository to Root/jxp042/thirdparty/.

• In Root/jxp042/thirdparty/mmdetection directory, run:

$ pip i n s t a l l −e .

• In Root/jxp042/, run:

$ pip i n s t a l l −r requ i rements . txt
$ pip i n s t a l l −e .
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A.2 Requirements

• Linux

• Python 3.7+

• PyTorch 1.8+

• CUDA 10.1+

• MMCV

• MMDetection

A.3 Dataset & Pre-trained model

• Download Dataset
Open Monkey Challenge Dataset

• Download COCO keypoint format annotation files
Annotation file for Training
Annotation file for Validation
Annotation file for Test

• Download Pre-trained model
Optimal model (12 epoch)

• Generate monkey dataset folder, and it has to get dataset, and annotation files.
(Root/jxp042/monkey dataset (train/, val/, cocoMonkeyTrain.json, cocoMonkeyVal.json, co-
coMonkeyTest.json))

A.4 Operate Code

All code is written for executing on jxp042/

• Inference:

$ python3 demo/image demo . py −−out− f i l e ( output f i l ename ) ( input f i l e d i r e c t o r y )
c o n f i g s / pet r / petr r50 monkey coco . py ( checkpo int d i r e c t o r y )

• Training:

$ bash t o o l s / d i s t t r a i n . sh c o n f i g s / pet r / petr r50 monkey coco . py 1
−−work−d i r monkeyDir −−gpu−id 0 −−resume−from ( checkpoint d i r e c t o r y )

• Evaluation: Average Precision (AP)
Run this code to obtain mAP, APL, AP50, and AP75:
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$ bash t o o l s / d i s t t e s t . sh c o n f i g s / pet r / petr r50 monkey coco . py
( checkpo int d i r e c t o r y ) 1 −−eval keypo ints

• Evaluation: Probability of Correct Keypoint (PCK)
After running code for AP evaluation, obtain the predicted result.json file.
Or download the already generated result file on Test set.
Then, compile the following code to get PCK @ 0.2 results for each keypoint:

$ python3 pck@0 . 2 . py

• Average Precision with different Threshold
You can manually modify the threshold in averagePrecision.py file and compile:

$ python3 ave ragePre c i s i on . py
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